Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation
- PMID: 19192197
- DOI: 10.1111/j.1751-1097.2008.00519.x
Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation
Abstract
Channelrhodopsins (ChR1 and ChR2) are directly light-gated ion channels acting as sensory photoreceptors in the green alga Chlamydomonas reinhardtii. These channels open rapidly after light absorption and both become permeable for cations such as H(+), Li(+), Na(+), K(+) and Ca(2+). K(m) for Ca(2+) is 16.6 mm in ChR1 and 18.3 mm in ChR2 whereas the K(m) values for Na(+) are higher than 100 mm for both ChRs. Action spectra of ChR1 peak between 470 and 500 nm depending on the pH conditions, whereas ChR2 peaks at 470 nm regardless of the pH value. Now we created two chimeric ChRs possessing helix 1-5 of ChR1 and 6, 7 of ChR2 (ChR1/2(5/2)), or 1, 2 from ChR1 and 3-7 from ChR2 (ChR1/2(2/5)). Both ChR-chimera still showed pH-dependent action spectra shifts. Finally, a mutant ChR1E87Q was generated that inactivated only slowly in the light and showed no spectral shift upon pH change. The results indicate that protonation/deprotonation of E87 in helix 1 alters the chromophore polarity, which shifts the absorption and modifies channel inactivation accordingly. We propose a trimodal counter ion complex for ChR1 but only a bimodal complex for ChR2.
Similar articles
-
Glutamate residue 90 in the predicted transmembrane domain 2 is crucial for cation flux through channelrhodopsin 2.Biochem Biophys Res Commun. 2011 Jul 15;410(4):737-43. doi: 10.1016/j.bbrc.2011.06.024. Epub 2011 Jun 12. Biochem Biophys Res Commun. 2011. PMID: 21683688
-
Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13940-5. doi: 10.1073/pnas.1936192100. Epub 2003 Nov 13. Proc Natl Acad Sci U S A. 2003. PMID: 14615590 Free PMC article.
-
Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.J Biol Chem. 2017 Aug 25;292(34):14205-14216. doi: 10.1074/jbc.M117.779629. Epub 2017 Jun 28. J Biol Chem. 2017. PMID: 28659342 Free PMC article.
-
Channelrhodopsins: directly light-gated cation channels.Biochem Soc Trans. 2005 Aug;33(Pt 4):863-6. doi: 10.1042/BST0330863. Biochem Soc Trans. 2005. PMID: 16042615 Review.
-
Evolution of the channelrhodopsin photocycle model.Chemphyschem. 2010 Apr 26;11(6):1120-6. doi: 10.1002/cphc.200900980. Chemphyschem. 2010. PMID: 20349494 Review.
Cited by
-
Improved trafficking and expression of luminopsins for more efficient optical and pharmacological control of neuronal activity.J Neurosci Res. 2020 Mar;98(3):481-490. doi: 10.1002/jnr.24546. Epub 2019 Oct 31. J Neurosci Res. 2020. PMID: 31670406 Free PMC article.
-
Targeted expression of step-function opsins in transgenic rats for optogenetic studies.Sci Rep. 2018 Apr 3;8(1):5435. doi: 10.1038/s41598-018-23810-8. Sci Rep. 2018. PMID: 29615713 Free PMC article.
-
Whole-cell Patch-clamp Recordings for Electrophysiological Determination of Ion Selectivity in Channelrhodopsins.J Vis Exp. 2017 May 22;(123):55497. doi: 10.3791/55497. J Vis Exp. 2017. PMID: 28570519 Free PMC article.
-
Optogenetic and chemogenetic techniques for neurogastroenterology.Nat Rev Gastroenterol Hepatol. 2018 Jan;15(1):21-38. doi: 10.1038/nrgastro.2017.151. Epub 2017 Nov 29. Nat Rev Gastroenterol Hepatol. 2018. PMID: 29184183 Review.
-
Two open states with progressive proton selectivities in the branched channelrhodopsin-2 photocycle.Biophys J. 2010 Mar 3;98(5):753-61. doi: 10.1016/j.bpj.2009.10.052. Biophys J. 2010. PMID: 20197028 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous