Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun;28(6):1324-30.
doi: 10.1897/08-262.1.

Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans

Affiliations

Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans

Hongbo Ma et al. Environ Toxicol Chem. 2009 Jun.

Abstract

Information describing the possible impacts of manufactured nanoparticles on human health and ecological receptors is limited. The objective of the present study was to evaluate the potential toxicological effects of manufactured zinc oxide nanoparticles (ZnO-NPs; 1.5 nm) compared to aqueous zinc chloride (ZnCl2) in the free-living nematode Caenorhabditis elegans. Toxicity of both types of Zn was investigated using the ecologically relevant endpoints of lethality, behavior, reproduction, and transgene expression in a mtl-2::GFP (gene encoding green fluorescence protein fused onto the metallothionein-2 gene promoter) transgenic strain of C. elegans. Zinc oxide nanoparticles showed no significant difference from ZnCl2 regarding either lethality or reproduction in C. elegans, as indicated by their median lethal concentrations (LC50s; p = 0.29, n=3) and median effective concentrations (EC50s; Z = 0.835, p = 0.797). Also, no significant difference was found in EC50s for behavioral change between ZnO-NPs (635 mg Zn/L; 95% confidence interval [CI], 477-844 mg Zn/L) and ZnCl2 (546 mg Zn/L; 95% CI, 447-666 mg Zn/L) (Z = 0.907, p = 0.834). Zinc oxide nanoparticles induced transgene expression in the mtl-2::GFP transgenic C. elegans in a manner similar to that of ZnCl2, suggesting that intracellular biotransformation of the nanoparticles might have occurred or the nanoparticles have dissolved to Zn2+ to enact toxicity. These findings demonstrate that manufactured ZnO-NPs have toxicity to the nematode C. elegans similar to that of aqueous ZnCl2.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources