mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures
- PMID: 19194514
- PMCID: PMC2633614
- DOI: 10.1371/journal.pone.0004391
mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures
Abstract
A monomeric variant of the red fluorescent protein eqFP611, mRuby, is described. With excitation and emission maxima at 558 nm and 605 nm, respectively, and a large Stokes shift of 47 nm, mRuby appears particularly useful for imaging applications. The protein shows an exceptional resistance to denaturation at pH extremes. Moreover, mRuby is about ten-fold brighter compared to EGFP when being targeted to the endoplasmic reticulum. The engineering process of eqFP611 revealed that the C-terminal tail of the protein acts as a natural peroxisomal targeting signal (PTS). Using an mRuby variant carrying the eqFP611-PTS, we discovered that ordered inheritance of peroxisomes is widespread during mitosis of different mammalian cell types. The ordered partitioning is realized by the formation of peroxisome clusters around the poles of the mitotic spindle and ensures that equal numbers of the organelle are inherited by the daughter cells. The unique spectral properties make mRuby the marker of choice for a multitude of cell biological applications. Moreover, the use of mRuby has allowed novel insights in the biology of organelles responsible for severe human diseases.
Conflict of interest statement
Figures
References
-
- Shaner NC, Patterson GH, Davidson MW. Advances in fluorescent protein technology. J Cell Sci. 2007;120:4247–4260. - PubMed
-
- Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol. 1999;17:969–973. - PubMed
-
- Wiedenmann J. The application of an orange fluorescent protein and further colored proteins and the corresponding genes from the species group Anemonia sp. (sulcata) Pennant, (Cnidaria, Anthozoa, Actinaria) in gene technology and molecular biology. (Die Anwendung eines orange fluoreszierenden Proteins und weiterer farbiger Proteine und der zugehörenden Gene aus der Artengruppe Anemonia sp. (sulcata) Pennant, (Cnidaria, Anthozoa, Actinaria) in Gentechnologie und Molekularbiologie.). Patent DE 197 18 640 Deutsches Patent- und Markenamt. Deutschland. 1997:1–18.
-
- Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods. 2007;4:555–557. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
