Characterisation of copper oxide nanoparticles for antimicrobial applications
- PMID: 19195845
- DOI: 10.1016/j.ijantimicag.2008.12.004
Characterisation of copper oxide nanoparticles for antimicrobial applications
Abstract
Copper oxide (CuO) nanoparticles were characterised and investigated with respect to potential antimicrobial applications. It was found that nanoscaled CuO, generated by thermal plasma technology, contains traces of pure Cu and Cu2O nanoparticles. Transmission electron microscopy (TEM) demonstrated particle sizes in the range 20-95 nm. TEM energy dispersive spectroscopy gave the ratio of copper to oxygen elements as 54.18% to 45.26%. The mean surface area was determined as 15.69 m(2)/g by Brunau-Emmet-Teller (BET) analysis. CuO nanoparticles in suspension showed activity against a range of bacterial pathogens, including meticillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli, with minimum bactericidal concentrations (MBCs) ranging from 100 microg/mL to 5000 microg/mL. The ability of CuO nanoparticles to reduce bacterial populations to zero was enhanced in the presence of sub-MBC concentrations of silver nanoparticles. Studies of CuO nanoparticles incorporated into polymers suggest release of ions may be required for optimum killing.
Similar articles
-
Strain specificity in antimicrobial activity of silver and copper nanoparticles.Acta Biomater. 2008 May;4(3):707-16. doi: 10.1016/j.actbio.2007.11.006. Epub 2007 Nov 26. Acta Biomater. 2008. PMID: 18248860
-
Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method.Dalton Trans. 2021 May 14;50(18):6188-6203. doi: 10.1039/d0dt04405a. Epub 2021 Apr 19. Dalton Trans. 2021. PMID: 33871499
-
Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles.Sci Total Environ. 2007 Feb 15;373(2-3):572-5. doi: 10.1016/j.scitotenv.2006.11.007. Epub 2006 Dec 13. Sci Total Environ. 2007. PMID: 17173953
-
Nanotechnology as a therapeutic tool to combat microbial resistance.Adv Drug Deliv Rev. 2013 Nov;65(13-14):1803-15. doi: 10.1016/j.addr.2013.07.011. Epub 2013 Jul 24. Adv Drug Deliv Rev. 2013. PMID: 23892192 Review.
-
The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver.Int J Antimicrob Agents. 2009 Aug;34(2):103-10. doi: 10.1016/j.ijantimicag.2009.01.017. Epub 2009 Mar 31. Int J Antimicrob Agents. 2009. PMID: 19339161 Review.
Cited by
-
Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment.Toxicol In Vitro. 2015 Apr;29(3):502-11. doi: 10.1016/j.tiv.2014.12.023. Epub 2015 Jan 6. Toxicol In Vitro. 2015. PMID: 25575782 Free PMC article.
-
Emerging Trends in Non-Enzymatic Cholesterol Biosensors: Challenges and Advancements.Biosensors (Basel). 2022 Nov 1;12(11):955. doi: 10.3390/bios12110955. Biosensors (Basel). 2022. PMID: 36354463 Free PMC article. Review.
-
MMP-3 mediates copper oxide nanoparticle-induced pulmonary inflammation and fibrosis.J Nanobiotechnology. 2024 Jul 19;22(1):428. doi: 10.1186/s12951-024-02707-x. J Nanobiotechnology. 2024. PMID: 39030581 Free PMC article.
-
Anti-Methicillin-Resistant Staphylococcus aureus Nanoantibiotics.Front Pharmacol. 2019 Oct 4;10:1121. doi: 10.3389/fphar.2019.01121. eCollection 2019. Front Pharmacol. 2019. PMID: 31636560 Free PMC article. Review.
-
PINK1/TAX1BP1-directed mitophagy attenuates vascular endothelial injury induced by copper oxide nanoparticles.J Nanobiotechnology. 2022 Mar 19;20(1):149. doi: 10.1186/s12951-022-01338-4. J Nanobiotechnology. 2022. PMID: 35305662 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical