Hyperthermic potentiation of BCNU toxicity in BCNU-resistant human glioma cells
- PMID: 1919644
- DOI: 10.1007/BF00166995
Hyperthermic potentiation of BCNU toxicity in BCNU-resistant human glioma cells
Abstract
Experimental evidence indicating potentiation of the cytotoxic effect of drugs at high temperatures suggests that the utilization of drug-heat combinations for gliomas of the brain might be therapeutically useful. Hyperthermia may increase the cytotoxicity of a particular drug in areas of low drug concentration/time and in cell populations resistant to the drug. We report in vitro experiments with a BCNU resistant, U-373MG, and a BCNU sensitive, U-87MG, human derived glioma cell lines under hyperthermic conditions. Temperatures equal or above 42 degrees C potentiate BCNU cell kill in both lines. The thermo-sensitizer lidocaine increases thermal cell kill but only minimally with concentrations corresponding to therapeutic plasma lidocaine levels. Within our experimental conditions, the best strategy to overcome BCNU resistance involved a combination of heat, BCNU and cis-DDP. BCNU resistant cells have no cross resistance to cis-DDP and the combination of BCNU and cis-DDP is synergistic. At modest hyperthermic conditions (42 degrees C) 99.4% BCNU resistant cells are killed by a combination of BCNU and cis-DDP at drug concentrations identical to plasma concentrations after standard IV doses. Clinical protocols using heat and drug may need to incorporate two or more drugs for optimal effects.