Minireview: Meeting the demand for insulin: molecular mechanisms of adaptive postnatal beta-cell mass expansion
- PMID: 19196831
- PMCID: PMC2691682
- DOI: 10.1210/me.2008-0400
Minireview: Meeting the demand for insulin: molecular mechanisms of adaptive postnatal beta-cell mass expansion
Abstract
Type 2 diabetes results from pancreatic ss-cell failure in the setting of insulin resistance. This model of disease progression has received recent support from the results of genome-wide association studies that identify genes potentially regulating ss-cell growth and function as type 2 diabetes susceptibility loci. Normal ss-cell compensation for an increased insulin demand includes both enhanced insulin-secretory capacity and an expansion of morphological ss-cell mass, due largely to changes in the balance between ss-cell proliferation and apoptosis. Recent years have brought significant progress in the understanding of both extrinsic signals stimulating ss-cell growth as well as mediators intrinsic to the ss-cell that regulate the compensatory response. Here, we review the current knowledge of mechanisms underlying adaptive expansion of ss-cell mass, focusing on lessons learned from experimental models of physiologically occurring insulin-resistant states including diet-induced obesity and pregnancy, and highlighting the potential importance of interorgan cross talk. The identification of critical mediators of islet compensation may direct the development of future therapeutic strategies to enhance the response of ss-cells to insulin resistance.
Figures
References
-
- Klöppel G, Löhr M, Habich K, Oberholzer M, Heitz PU 1985 Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res 4:110–125 - PubMed
-
- Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC 2003 β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110 - PubMed
-
- Ritzel RA, Butler AE, Rizza RA, Veldhuis JD, Butler PC 2006 Relationship between β-cell mass and fasting blood glucose concentration in humans. Diabetes Care 29:717–718 - PubMed
-
- Brüning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahn CR 1997 Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88:561–572 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
