Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan-Feb;74(1):H8-H14.
doi: 10.1111/j.1750-3841.2008.00982.x.

Food deprivation promotes oxidative imbalance in rat brain

Affiliations

Food deprivation promotes oxidative imbalance in rat brain

R X Santos et al. J Food Sci. 2009 Jan-Feb.

Abstract

The present study was aimed to evaluate the effect of food deprivation in brain oxidative status of Wistar and Goto-Kakizaki (GK) rats. For this purpose, we evaluated several oxidative stress parameters: lipid peroxidation (thiobarbituric acid reactive substances [TBARS]) and protein oxidation markers, hydrogen peroxide (H(2)O(2)) levels, nonenzymatic (reduced [GSH] and oxidized glutathione [GSSG] and vitamin E) and enzymatic (glutathione peroxidase [GPx], glutathione reductase [GRed], and manganese superoxide dismutase [MnSOD]) antioxidant defenses. Four-mo-old Wistar and GK rats were divided into 2 groups. One group of each rat strain was maintained under normal diet and the other groups were maintained under 50% food deprivation during 2 mo. GK rats under normal diet presented lower levels of vitamin E and higher GRed activity and GSH/GSSG ratio when compared with Wistar control rats. In Wistar rats, food deprivation induced a significant decrease in vitamin E levels and a significant increase in GPx activity, H(2)O(2) production, and TBARS formation in the presence of the prooxidant pair ADP/Fe(2+). However, GK rats under food deprivation presented a significant decrease in vitamin E levels and GRed activity and a significant increase in H(2)O(2) production when compared with GK under normal diet. In summary, our results indicate that food deprivation affects brain oxidative status, which could predispose brain cells to degeneration and death.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources