Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug 15;167(1-3):560-6.
doi: 10.1016/j.jhazmat.2009.01.024. Epub 2009 Jan 16.

Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds

Affiliations

Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds

Shengxiao Zhang et al. J Hazard Mater. .

Abstract

Fe(3)O(4) magnetic nanoparticles (MNPs) with diameters about 10nm were synthesized successfully and used to remove phenol and aniline from aqueous solution. The results showed that phenol and aniline could be eliminated easily from solution under acidic and neutral conditions in the presence of MNPs and H(2)O(2). When the concentrations of Fe(3)O(4) MNPs and H(2)O(2) were 5gL(-1) and 1.2M, respectively, phenol and aniline could be removed completely after 6h of reaction at 308K, and the total organic carbon (TOC) abatement efficiency for phenol and aniline were 42.79% and 40.38%. Some intermediates such as formic acid, acetic acid, fumaric acid and hydroquinone were detected during reaction. Fe(3)O(4) MNPs exhibited good stability and reusability, also showed excellent catalysis ability to eliminate some substituted phenolic and aniline compounds from solution. Fe(3)O(4) MNPs had good superparamagnetism and was readily separated from solution by applying an external magnetic field. Finally we proposed that phenol and aniline might be degraded by the hydroxyl free radicals (.OH) released from H(2)O(2) in the presence of Fe(3)O(4) MNPs as catalysts.

PubMed Disclaimer

Publication types

LinkOut - more resources