Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 May;30(13):2559-70.
doi: 10.1016/j.biomaterials.2009.01.014. Epub 2009 Feb 7.

Multiscale requirements for bioencapsulation in medicine and biotechnology

Affiliations
Review

Multiscale requirements for bioencapsulation in medicine and biotechnology

Paul de Vos et al. Biomaterials. 2009 May.

Abstract

Bioencapsulation involves the envelopment of tissues or biological active substances in semipermeable membranes. Bioencapsulation has been shown to be efficacious in mimicking the cell's natural environment and thereby improves the efficiency of production of different metabolites and therapeutic agents. The field of application is broad. It is being applied in bioindustry and biomedicine. It is clinically applied for the treatment of a wide variety of endocrine diseases. During the past decades many procedures to fabricate capsules have been described. Unfortunately, most of these procedures lack an adequate documentation of the characterization of the biocapsules. As a result many procedures show an extreme lab-to-lab variation and many results cannot be adequately reproduced. The characterization of capsules can no longer be neglected, especially since new clinical trials with bioencapsulated therapeutic cells have been initiated and the industrial application of bioencapsulation is growing. In the present review we discuss novel Approached to produce and characterize biocapsules in view of clinical and industrial application. A dominant factor in bioencapsulation is selection and characterization of suitable polymers. We present the adequacy of using high-resolution NMR for characterizing polymers. These polymers are applied for producing semipermeable membranes. We present the pitfalls of the currently applied methods and provide recommendations for standardization to avoid lab-to-lab variations. Also, we compare and present methodologies to produce biocompatible biocapsules for specific fields of applications and we demonstrate how physico-chemical technologies such as FT-IR, XPS, and TOF-SIMS contribute to reproducibility and standardization of the bioencapsulation process. During recent years it has become more and more clear that bioencapsulation requires a multidisciplinary approach in which biomedical, physical, and chemical technologies are combined. For adequate reproducibility and for understanding variations in outcome of biocapsules it is advisable if not mandatory to include the characterization processes presented in this review in future studies.

PubMed Disclaimer

Similar articles

Cited by

Publication types