Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr;45(4):358-68.
doi: 10.1016/j.ceca.2008.12.007. Epub 2009 Feb 7.

Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols

Affiliations

Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols

María Rosario Campos-Esparza et al. Cell Calcium. 2009 Apr.

Abstract

Excessive activation of glutamate receptors, or excitotoxicity, contributes to acute and chronic neurological disorders including stroke. We previously showed that two natural polyphenol antioxidants, mangiferin and morin, are neuroprotective in a model of ischemic brain damage. In this study, we analyzed the molecular mechanisms underlying neuroprotection by mangiferin and morin in an in vitro model of excitotoxic neuronal death involving NMDA receptor overactivation. We observed that both polyphenols reduce the formation of reactive oxygen species, activate the enzymatic antioxidant system, and restore the mitochondrial membrane potential. Moreover, both antioxidants inhibit glutamate-induced activation of calpains, normalize the levels of phosphorylated Akt kinase and Erk1/2, as well as of cytosolic Bax, inhibit AIF release from mitochondria, and regulate the nuclear translocation of NF-kappaB. Each of these effects contributes to the substantial reduction of apoptotic neuronal death induced by glutamate. These results demonstrate that mangiferin and morin exhibit excellent antioxidant and antiapoptotic properties, supporting their clinical application as trial neuroprotectors in pathologies involving excitotoxic neuronal death.

PubMed Disclaimer

Publication types

MeSH terms