Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;58(7):910-9.
doi: 10.1136/gut.2007.147595. Epub 2009 Feb 6.

Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse

Affiliations

Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse

P A Dawson et al. Gut. 2009 Jul.

Abstract

Objective: Sulfate (SO(4)(2-)) is an abundant component of intestinal mucins and its content is decreased in certain gastrointestinal diseases, including inflammatory bowel disease. In this study, the hyposulfataemic NaS1 sulfate transporter null (Nas1(-/-)) mice were used to investigate the physiological consequences of disturbed sulfate homeostasis on (1) intestinal sulfomucin content and mRNA expression; (2) intestinal permeability and proliferation; (3) dextran sulfate sodium (DSS)-induced colitis; and (4) intestinal barrier function against the bacterial pathogen, Campylobacter jejuni.

Methods: Intestinal sulfomucins and sialomucins were detected by high iron diamine staining, permeability was assessed by fluorescein isothiocyanate (FITC)-dextran uptake, and proliferation was assessed by 5-bromodeoxyuridine (BrdU) incorporation. Nas1(-/-) and wild-type (Nas1(+/+)) mice received DSS in drinking water, and intestinal damage was assessed by histological, clinical and haematological measurements. Mice were orally inoculated with C jejuni, and intestinal and systemic infection was assessed. Ileal mRNA expression profiles of Nas1(-/-) and Nas1(+/+) mice were determined by cDNA microarrays and validated by quantitative real-time PCR.

Results: Nas1(-/-) mice exhibited reduced intestinal sulfomucin content, enhanced intestinal permeability and DSS-induced colitis, and developed systemic infections when challenged orally with C jejuni. The transcriptional profile of 41 genes was altered in Nas1(-/-) mice, with the most upregulated gene being pancreatic lipase-related protein 2 and the most downregulated gene being carbonic anhydrase 1 (Car1).

Conclusion: Sulfate homeostasis is essential for maintaining a normal intestinal metabolic state, and hyposulfataemia leads to reduced intestinal sulfomucin content, enhanced susceptibility to toxin-induced colitis and impaired intestinal barrier to bacterial infection.

PubMed Disclaimer

Publication types