Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri
- PMID: 19201801
- PMCID: PMC2668380
- DOI: 10.1128/JB.00563-08
Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri
Abstract
Methanosarcina acetivorans C2A encodes three putative hydrogenases, including one cofactor F(420)-linked (frh) and two methanophenazine-linked (vht) enzymes. Comparison of the amino acid sequences of these putative hydrogenases to those of Methanosarcina barkeri and Methanosarcina mazei shows that each predicted subunit contains all the known residues essential for hydrogenase function. The DNA sequences upstream of the genes in M. acetivorans were aligned with those in other Methanosarcina species to identify conserved transcription and translation signals. The M. acetivorans vht promoter region is well conserved among the sequenced Methanosarcina species, while the second vht-type homolog (here called vhx) and frh promoters have only limited similarity. To experimentally determine whether these promoters are functional in vivo, we constructed and characterized both M. acetivorans and M. barkeri strains carrying reporter gene fusions to each of the M. acetivorans and M. barkeri hydrogenase promoters. Generally, the M. acetivorans gene fusions are not expressed in either organism, suggesting that cis-acting mutations inactivated the M. acetivorans promoters. The M. barkeri hydrogenase gene fusions, on the other hand, are expressed in both organisms, indicating that M. acetivorans possesses the machinery to express hydrogenases, although it does not express its own hydrogenases. These data are consistent with specific inactivation of the M. acetivorans hydrogenase promoters and highlight the importance of testing hypotheses generated by using genomic data.
Figures




Similar articles
-
Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A.BMC Microbiol. 2010 Feb 23;10:62. doi: 10.1186/1471-2180-10-62. BMC Microbiol. 2010. PMID: 20178638 Free PMC article.
-
Genetic, Biochemical, and Molecular Characterization of Methanosarcina barkeri Mutants Lacking Three Distinct Classes of Hydrogenase.J Bacteriol. 2018 Sep 24;200(20):e00342-18. doi: 10.1128/JB.00342-18. Print 2018 Oct 15. J Bacteriol. 2018. PMID: 30012731 Free PMC article.
-
The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes.J Bacteriol. 2006 Nov;188(22):7922-31. doi: 10.1128/JB.00810-06. Epub 2006 Sep 15. J Bacteriol. 2006. PMID: 16980466 Free PMC article.
-
Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species.Mol Microbiol. 2005 Mar;55(6):1671-80. doi: 10.1111/j.1365-2958.2005.04514.x. Mol Microbiol. 2005. PMID: 15752192
-
Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea.Appl Environ Microbiol. 2017 Aug 31;83(18):e00950-17. doi: 10.1128/AEM.00950-17. Print 2017 Sep 15. Appl Environ Microbiol. 2017. PMID: 28710268 Free PMC article.
Cited by
-
Energy Conservation and Hydrogenase Function in Methanogenic Archaea, in Particular the Genus Methanosarcina.Microbiol Mol Biol Rev. 2019 Sep 18;83(4):e00020-19. doi: 10.1128/MMBR.00020-19. Print 2019 Nov 20. Microbiol Mol Biol Rev. 2019. PMID: 31533962 Free PMC article. Review.
-
Genetic and Physiological Probing of Cytoplasmic Bypasses for the Energy-Converting Methyltransferase Mtr in Methanosarcina acetivorans.Appl Environ Microbiol. 2023 Jul 26;89(7):e0216122. doi: 10.1128/aem.02161-22. Epub 2023 Jun 22. Appl Environ Microbiol. 2023. PMID: 37347168 Free PMC article.
-
Genome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina acetivorans C2A.J Bacteriol. 2012 Feb;194(4):855-65. doi: 10.1128/JB.06040-11. Epub 2011 Dec 2. J Bacteriol. 2012. PMID: 22139506 Free PMC article.
-
Responses of Methanosarcina barkeri to acetate stress.Biotechnol Biofuels. 2019 Dec 16;12:289. doi: 10.1186/s13068-019-1630-5. eCollection 2019. Biotechnol Biofuels. 2019. PMID: 31890017 Free PMC article.
-
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions.Microbiol Mol Biol Rev. 2016 Apr 27;80(2):451-93. doi: 10.1128/MMBR.00070-15. Print 2016 Jun. Microbiol Mol Biol Rev. 2016. PMID: 27122598 Free PMC article. Review.
References
-
- Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1992. Current protocols in molecular biology. John Wiley & Sons, New York, NY.
-
- Berks, B. C. 1996. A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol. 22393-404. - PubMed
-
- Blokesch, M., A. Paschos, E. Theodoratou, A. Bauer, M. Hube, S. Huth, and A. Bock. 2002. Metal insertion into NiFe-hydrogenases. Biochem. Soc. Trans. 30674-680. - PubMed
-
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72248-254. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources