Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 15;179(8):657-65.
doi: 10.1164/rccm.200809-1516OC. Epub 2009 Feb 6.

A novel antiinflammatory role for andrographolide in asthma via inhibition of the nuclear factor-kappaB pathway

Affiliations

A novel antiinflammatory role for andrographolide in asthma via inhibition of the nuclear factor-kappaB pathway

Zhang Bao et al. Am J Respir Crit Care Med. .

Abstract

Rationale: Persistent activation of nuclear factor (NF)-kappaB has been associated with the development of asthma. Andrographolide, the principal active component of the medicinal plant Andrographis paniculata, has been shown to inhibit NF-kappaB activity.

Objectives: We hypothesized that andrographolide may attenuate allergic asthma via inhibition of the NF-kappaB signaling pathway.

Methods: BALB/c mice sensitized and challenged with ovalbumin (OVA) developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Serum IgE levels were also determined. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis.

Measurements and main results: Andrographolide dose-dependently inhibited OVA-induced increases in total cell count, eosinophil count, and IL-4, IL-5, and IL-13 levels recovered in bronchoalveolar lavage fluid, and reduced serum level of OVA-specific IgE. It attenuated OVA-induced lung tissue eosinophilia and airway mucus production, mRNA expression of E-selectin, chitinases, Muc5ac, and inducible nitric oxide synthase in lung tissues, and airway hyperresponsiveness to methacholine. In normal human bronchial epithelial cells, andrographolide blocked tumor necrosis factor-alpha-induced phosphorylation of inhibitory kappaB kinase-beta, and downstream inhibitory kappaB alpha degradation, p65 subunit of NF-kappaB phosphorylation, and p65 nuclear translocation and DNA-binding activity. Similarly, andrographolide blocked p65 nuclear translocation and DNA-binding activity in the nuclear extracts from lung tissues of OVA-challenged mice.

Conclusions: Our findings implicate a potential therapeutic value of andrographolide in the treatment of asthma and it may act by inhibiting the NF-kappaB pathway at the level of inhibitory kappaB kinase-beta activation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms