Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec;27(4):284-90.

Transport of lithium across the lamprey (Lampetra fluviatilis) erythrocyte membrane

Affiliations
  • PMID: 19202202

Transport of lithium across the lamprey (Lampetra fluviatilis) erythrocyte membrane

Gennadii P Gusev et al. Gen Physiol Biophys. 2008 Dec.

Abstract

Lithium, capable of replacing Na+ in various membrane transport processes, was used to investigate Na+ transport pathways across the lamprey erythrocytes membrane. The values of Li+ influxes have ranged from 8 to 24 mmol/l cells/h. Intracellular accumulation of Li+ was associated with loss of cellular Na+, the value of which was less than the value of Li+ influx. Both Li+ influx and Na+ efflux were partially inhibited by amiloride. The amiloride-sensitive Li+ influx was considerably stimulated by hyperosmotic cell shrinkage. The treatment of lamprey erythrocytes with blockers of protein phosphatases (fluoride and cantharidin) also resulted in a considerable increase in Li+ accumulation within the cells. No significant difference was observed between the values of Li+ and Na+ (22Na) influxes measured in red cells incubated simultaneously in isotonic LiCl and NaCl media (9.2 +/- 2.1 and 7.8 +/- 1.3 mmol/l cells/h, respectively). In hypo- and hypertonic media, however, the rate of Na+ influx in lamprey erythrocytes was approximately twice higher as compared to the rate of Li+ influx, what was determined by the difference in the amiloride-sensitive components. In acidified lamprey erythrocytes (intracellular pH 6.0) Li+ and Na+ influxes were considerably increased due to activation of amiloride-sensitive Na+/H+ (Li+/H+) exchange mechanism, although the activity of Na+/H+ exchange was much greater than that of Li+/H+ exchange. The data obtained confirm the hypothesis on the presence of two amiloride-sensitive systems of Na+ transport in the lamprey red blood cells.

PubMed Disclaimer