Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009:330:73-87.
doi: 10.1007/978-3-540-70617-5_4.

Ferrets as a model for morbillivirus pathogenesis, complications, and vaccines

Affiliations
Review

Ferrets as a model for morbillivirus pathogenesis, complications, and vaccines

S Pillet et al. Curr Top Microbiol Immunol. 2009.

Abstract

The ferret is a standard laboratory animal that can be accommodated in most animal facilities. While not susceptible to measles, ferrets are a natural host of canine distemper virus (CDV), the closely related carnivore morbillivirus. CDV infection in ferrets reproduces all clinical signs associated with measles in humans, including the typical rash, fever, general immunosuppression, gastrointestinal and respiratory involvement, and neurological complications. Due to this similarity, experimental CDV infection of ferrets is frequently used to assess the efficacy of novel vaccines, and to characterize pathogenesis mechanisms. In addition, direct intracranial inoculation of measles isolates from subacute sclerosing panencephalitis (SSPE) patients results in an SSPE-like disease in animals that survive the acute phase. Since the advent of reverse genetics systems that allow the targeted manipulation of viral genomes, the model has been used to evaluate the contribution of the accessory proteins C and V, and signalling lymphocyte activation molecule (SLAM)-binding to immunosuppression and overall pathogenesis. Similarly produced green fluorescent protein-expressing derivatives that maintain parental virulence have been instrumental in the direct visualization of systemic dissemination and neuroinvasion. As more immunological tools become available for this model, its contribution to our understanding of morbillivirus-host interactions is expected to increase.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Alldinger S, Wunschmann A, Baumgartner W, Voss C, Kremmer E. Up-regulation of major histocompatibility complex class II antigen expression in the central nervous system of dogs with spontaneous canine distemper virus encephalitis. Acta Neuropathol. 1996;92:273–280. doi: 10.1007/s004010050518. - DOI - PubMed
    1. Appel MJ, Harris WV. Antibody titers in domestic ferret jills and their kits to canine distemper virus vaccine. J Am Vet Med Assoc. 1988;193:332–333. - PubMed
    1. Appel MJ, Shek WR, Summers BA. Lymphocyte-mediated immune cytotoxicity in dogs infected with virulent canine distemper virus. Infect Immun. 1982;37:592–600. - PMC - PubMed
    1. Appel MJ, Shek WR, Shesberadaran H, Norrby E. Measles virus and inactivated canine distemper virus induce incomplete immunity to canine distemper. Arch Virol. 1984;82:73–82. doi: 10.1007/BF01309369. - DOI - PubMed
    1. Appel MJ, Summers BA. Pathogenicity of morbilliviruses for terrestrial carnivores. Vet Microbiol. 1995;44:187–191. doi: 10.1016/0378-1135(95)00011-X. - DOI - PubMed

MeSH terms

Substances