Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women
- PMID: 19204302
- PMCID: PMC2663974
- DOI: 10.1161/CIRCULATIONAHA.108.816181
Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women
Abstract
Background: Nuclear magnetic resonance (NMR) spectroscopy measures the number and size of lipoprotein particles instead of their cholesterol or triglyceride content, but its clinical utility is uncertain.
Methods and results: Baseline lipoproteins were measured by NMR in 27 673 initially healthy women followed up for incident cardiovascular disease (n=1015) over an 11-year period. After adjustment for nonlipid risk factors, hazard ratios and 95% confidence intervals for the top versus the bottom quintile of NMR-measured lipoprotein particle concentration (measured in particles per liter) were 2.51 (1.91 to 3.30) for low-density lipoprotein (LDL(NMR)), 0.91 (0.75 to 1.12) for high-density lipoprotein (HDL(NMR)), 1.71 (1.38 to 2.12) for very low-density lipoprotein (VLDL(NMR)), and 2.25 (1.80 to 2.81) for the LDL(NMR)/HDL(NMR) ratio. Similarly adjusted results for NMR-measured lipoprotein particle size (measured in nanometers) were 0.64 (0.52 to 0.79) for LDL(NMR) size, 0.65 (0.51 to 0.81) for HDL(NMR) size, and 1.37 (1.10 to 1.70) for VLDL(NMR) size. Hazard ratios for NMR measures were comparable but not superior to standard lipids (total cholesterol 2.08 [1.63 to 2.67], LDL cholesterol 1.74 [1.40 to 2.16], HDL cholesterol 0.52 [0.42 to 0.64], triglycerides 2.58 [1.95 to 3.41], non-HDL cholesterol 2.52 [1.95 to 3.25], total/HDL cholesterol ratio 2.82 [2.23 to 3.58]) and apolipoproteins (B(100) 2.57 [1.98 to 3.33], A-1 0.63 [0.52 to 0.77], and B(100)/A-1 ratio 2.79 [2.21 to 3.54]). Essentially no reclassification improvement was found with the addition of the LDL(NMR) particle concentration or apolipoprotein B(100) to a model that already included the total/HDL cholesterol ratio and nonlipid risk factors (net reclassification index 0% and 1.9%, respectively), nor did the addition of either variable result in a statistically significant improvement in the c-index.
Conclusions: In this prospective study of healthy women, cardiovascular disease risk prediction associated with lipoprotein profiles evaluated by NMR was comparable but not superior to that of standard lipids or apolipoproteins.
Trial registration: ClinicalTrials.gov NCT00000479.
Figures
Comment in
-
Letter by Ala-Korpela et al regarding article, "Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women".Circulation. 2009 Oct 27;120(17):e149; author reply e150. doi: 10.1161/CIRCULATIONAHA.109.864124. Circulation. 2009. PMID: 19858422 No abstract available.
References
-
- Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–3421. - PubMed
-
- De Backer G, Ambrosioni E, Borch-Johnsen K, Brotons C, Cifkova R, Dallongeville J, Ebrahim S, Faergeman O, Graham I, Mancia G, Cats VM, Orth-Gomer K, Perk J, Pyorala K, Rodicio JL, Sans S, Sansoy V, Sechtem U, Silber S, Thomsen T, Wood D. European guidelines on cardiovascular disease and prevention in clinical practice. Atherosclerosis. 2003;171:145–155. - PubMed
-
- Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med. 2006;26:847–870. - PubMed
-
- Otvos JD, Jeyarajah EJ, Cromwell WC. Measurement issues related to lipoprotein heterogeneity. Am J Cardiol. 2002;90:22i–29i. - PubMed
Publication types
MeSH terms
Substances
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
