Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;15(13):3147-51.
doi: 10.1002/chem.200802165.

Use of selenium to detect mercury in water and cells: an enhancement of the sensitivity and specificity of a seleno fluorescent probe

Affiliations

Use of selenium to detect mercury in water and cells: an enhancement of the sensitivity and specificity of a seleno fluorescent probe

Bo Tang et al. Chemistry. 2009.

Abstract

Seleno fluorescent probe: An organoselenium fluorescent probe (FSe-1) for mercury was designed based on the irreversible deselenation mechanism. FSe-1 exhibits an ultrahigh selectivity and sensitivity for Hg(2+) detection only for reactive selenium atom sites, due the strong affinity between Se and Hg. Furthermore, the new probe has been successfully used for imaging mercury ions in RAW 264.7 cells (a mouse macrophage cell line; see figure).Inspired by the antitoxic function of selenium towards heavy-metal ions, we designed an organoselenium fluorescent probe (FSe-1) for mercury. The reaction of FSe-1 and Hg(2+) is an irreversible deselenation mechanism based on the selenophilic character of mercury. FSe-1 exhibits an ultrahigh selectivity and sensitivity for Hg(2+) detection only for reactive selenium atom sites due to the strong affinity between Se and Hg. The experimental results proved that FSe-1 was selective for Hg(2+) ions over other relevant metal ions and bioanalytes, and also showed an enhancement in sensitivity of up to 1.0 nM, which is lower than the current Environmental Protection Agency standard for drinking water. Furthermore, the new probe has been successfully applied to the imaging of mercury ions in RAW 264.7 cells (a mouse macrophage cell line) with high sensitivity and selectivity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources