Sensitivity of MR diffusion measurements to variations in intracellular structure: effects of nuclear size
- PMID: 19205020
- PMCID: PMC2749035
- DOI: 10.1002/mrm.21793
Sensitivity of MR diffusion measurements to variations in intracellular structure: effects of nuclear size
Abstract
Magnetic resonance imaging measurements of the apparent rate of water diffusion in tumors are sensitive to variations in tissue cellularity, which have been shown useful for characterizing tumors and their responses to treatments. However, because of technical limitations on most MRI systems, conventional pulse gradient spin echo (PGSE) methods measure relatively long time scales, during which water molecules may encounter diffusion barriers at multiple spatial scales, including those much greater than typical cell dimensions. As such they cannot distinguish changes on subcellular scales from gross changes in cell density. Oscillating gradient spin echo (OGSE) methods have the potential to distinguish effects on restriction at much shorter time and length scales. Both PGSE and OGSE methods have been studied numerically by simulating diffusion in a three-dimensional, multicompartment tissue model. The results show that conventional measurements with the PGSE method cannot selectively probe variations over short length scales and, therefore, are relatively insensitive to intracellular structure, whereas results using OGSE methods at moderate gradient frequencies are affected by variations in cell nuclear sizes and can distinguish tissues that differ only over subcellular length scales. This additional sensitivity suggests that OGSE imaging may have significant advantages over conventional PGSE methods for characterizing tumors.
Figures
References
-
- Cory DG, Garroway AN. Measurement of translational displacement probabilities by NMR: an indicator of compartmentation. Magn Reson Med. 1990;14(3):435–444. - PubMed
-
- Assaf Y, Mayk A, Cohen Y. Displacement imaging of spinal cord using q-space diffusion-weighted MRI. Magn Reson Med. 2000;44(5):713–722. - PubMed
-
- Chin CL, Wehrli FW, Fan Y, Hwang SN, Schwartz ED, Nissanov J, Hackney DB. Assessment of axonal fiber tract architecture in excised rat spinal cord by localized NMR q-space imaging: simulations and experimental studies. Magn Reson Med. 2004;52(4):733–740. - PubMed
-
- Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14(2):330–346. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
