Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
- PMID: 19205079
- PMCID: PMC2658655
- DOI: 10.1098/rsif.2008.0172
Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
Abstract
Approximate Bayesian computation (ABC) methods can be used to evaluate posterior distributions without having to calculate likelihoods. In this paper, we discuss and apply an ABC method based on sequential Monte Carlo (SMC) to estimate parameters of dynamical models. We show that ABC SMC provides information about the inferability of parameters and model sensitivity to changes in parameters, and tends to perform better than other ABC approaches. The algorithm is applied to several well-known biological systems, for which parameters and their credible intervals are inferred. Moreover, we develop ABC SMC as a tool for model selection; given a range of different mathematical descriptions, ABC SMC is able to choose the best model using the standard Bayesian model selection apparatus.
Figures









Similar articles
-
Alive SMC(2) : Bayesian model selection for low-count time series models with intractable likelihoods.Biometrics. 2016 Jun;72(2):344-53. doi: 10.1111/biom.12449. Epub 2015 Nov 19. Biometrics. 2016. PMID: 26584211
-
Bayesian parameter inference and model selection by population annealing in systems biology.PLoS One. 2014 Aug 4;9(8):e104057. doi: 10.1371/journal.pone.0104057. eCollection 2014. PLoS One. 2014. PMID: 25089832 Free PMC article.
-
al3c: high-performance software for parameter inference using Approximate Bayesian Computation.Bioinformatics. 2015 Nov 1;31(21):3549-51. doi: 10.1093/bioinformatics/btv393. Epub 2015 Jul 2. Bioinformatics. 2015. PMID: 26142186 Free PMC article.
-
ABC as a flexible framework to estimate demography over space and time: some cons, many pros.Mol Ecol. 2010 Jul;19(13):2609-25. doi: 10.1111/j.1365-294X.2010.04690.x. Epub 2010 Jun 18. Mol Ecol. 2010. PMID: 20561199 Review.
-
Model selection in systems and synthetic biology.Curr Opin Biotechnol. 2013 Aug;24(4):767-74. doi: 10.1016/j.copbio.2013.03.012. Epub 2013 Apr 8. Curr Opin Biotechnol. 2013. PMID: 23578462 Review.
Cited by
-
Sheep scab transmission: a spatially explicit dynamic metapopulation model.Vet Res. 2021 Apr 12;52(1):54. doi: 10.1186/s13567-021-00924-y. Vet Res. 2021. PMID: 33845898 Free PMC article.
-
A Bayesian approach to targeted experiment design.Bioinformatics. 2012 Apr 15;28(8):1136-42. doi: 10.1093/bioinformatics/bts092. Epub 2012 Feb 24. Bioinformatics. 2012. PMID: 22368245 Free PMC article.
-
Squeeze-and-breathe evolutionary Monte Carlo optimization with local search acceleration and its application to parameter fitting.J R Soc Interface. 2012 Aug 7;9(73):1925-33. doi: 10.1098/rsif.2011.0767. Epub 2012 Jan 19. J R Soc Interface. 2012. PMID: 22262815 Free PMC article.
-
Calibrating the Discrete Boundary Conditions of a Dynamic Simulation: A Combinatorial Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) Approach.Sensors (Basel). 2024 Jul 27;24(15):4883. doi: 10.3390/s24154883. Sensors (Basel). 2024. PMID: 39123931 Free PMC article.
-
Moana: Alternate surveillance for COVID-19 in a Unique Population (MASC-UP).Contemp Clin Trials Commun. 2023 Dec 20;37:101246. doi: 10.1016/j.conctc.2023.101246. eCollection 2024 Feb. Contemp Clin Trials Commun. 2023. PMID: 38222877 Free PMC article.
References
-
- Anderson R.M., May R.M. Oxford University Press; New York, NY: 1991. Infectious diseases of humans: dynamics and control.
-
- Baker C., Bocharov G., Ford J., Lumb P.S.J., Norton C.A.H., Paul T., Junt P., Krebs B. Ludewig computational approaches to parameter estimation and model selection in immunology. J. Comput. Appl. Math. 2005;184:50–76. doi: 10.1016/j.cam.2005.02.003. - DOI
-
- Banks H., Grove S., Hu S., Ma Y. A hierarchical Bayesian approach for parameter estimation in HIV models. Inverse Problems. 2005;21:1803–1822. doi: 10.1088/0266-5611/21/6/001. - DOI
-
- Beaumont, M. 2008a Simulations, genetics and human prehistory (eds S. Matsumura, P. Forester & C. Renfrew). McDonald Institute Monographs, University of Cambridge.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources