Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun;22(3):531-9.
doi: 10.1007/s10534-009-9210-y. Epub 2009 Feb 10.

Copper egress is induced by PMA in human THP-1 monocytic cell line

Affiliations

Copper egress is induced by PMA in human THP-1 monocytic cell line

Scott E Afton et al. Biometals. 2009 Jun.

Abstract

Copper egress is an essential regulator of the kinetics of cellular copper and is primarily regulated by ATP7A, a copper-transporting P-type ATPase. However, little is known under which physiological condition copper egress is induced and its molecular consequence. In current manuscript, using THP-1 cells, a human monocytic cell line, we found that ATP7A expression was increased in cells exposed to phorbol-12-myristate-13-acetate (PMA), a potent inducer of neovascularization and cancer. Inductively coupled plasma mass spectrometry revealed that PMA also induced copper egress. Inhibition of ATP7A expression using small interfering RNA abrogated PMA induced copper egress. PMA treatment in THP-1 cells resulted in increased expression of matrix metalloproteinase (MMP) 9 and vascular endothelial growth factor receptor 1 (VEGFR1), whereas inhibition of ATP7A resulted in suppression of PMA-induced expression of VEGFR1, but not MMP9. Finally, addition of exogenous copper into the conditioned medium did not change VEGFR1 expression in THP-1 cells. Collectively, we demonstrate that PMA induces copper egress in THP-1 cells, which is regulated by ATP7A, and ATP7A regulates VEGFR1 expression. Considering the involvement of copper in neovascularization, our current finding provides the potential evidence to interpret the molecular mechanism.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources