Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar;66(3):166-78.
doi: 10.1002/cm.20339.

Modulating alpha-actinin-4 dynamics in podocytes

Affiliations

Modulating alpha-actinin-4 dynamics in podocytes

Jean-Louis R Michaud et al. Cell Motil Cytoskeleton. 2009 Mar.

Abstract

Podocytes are epithelial cells that line the outer aspect of renal blood vessels and provide a platform for the kidney's filtering apparatus, the slit diaphragm. Mutations in alpha-actinin-4, an actin bundling protein highly expressed in podocytes, result in increased affinity for actin and cause a familial form of focal segmental glomerulosclerosis. We hypothesized that such gain-of-affinity mutations would override alpha-actinin-4's sensitivity to regulatory factors such as calcium (acting via two EF-hand motifs), and phosphoinositides. We generated calcium- (mutEF) and phosphoinositide- (mutPI) insensitive variants of alpha-actinin-4, comparing their properties to a disease-associated mutant (K256E) and to the wildtype (wt) protein. alpha-Actinin-4(mutPI) displayed increased affinity for actin, while the affinity of alpha-actinin-4(mutEF) was unchanged. Addition of calcium to actin sedimentation assays caused a decrease in the association of alpha-actinin-4(wt) with filamentous actin, while phosphoinositides generally increased this association. Similar to alpha-actinin-4(K256E), alpha-actinin-4(mutPI) was mislocalized in cultured podocytes, being preferentially associated with filamentous actin and focal adhesions. Fluorescence recovery after photobleaching experiments revealed a rapid turnover of alpha-actinin-4(wt) and alpha-actinin-4(mutEF) along stress fibers and focal adhesions, while the turnover of alpha-actinin-4(K256E) and alpha-actinin-4(mutPI) was dramatically reduced at these subcellular locales. Equibiaxial mechanical stimulation of podocytes, a mimic of intraglomerular forces, reduced podocyte surface area by 50%; this decrease was more severe (70%) in the presence of high-affinity mutants of alpha-actinin-4. These data suggest that dynamic regulation of alpha-actinin-4/actin interactions may be necessary for maintaining podocyte structure in response to glomerular hydrostatic forces.

PubMed Disclaimer

Publication types

LinkOut - more resources