Carbon-nanotube-induced acceleration of catalytic nanomotors
- PMID: 19206505
- DOI: 10.1021/nn800154g
Carbon-nanotube-induced acceleration of catalytic nanomotors
Abstract
Synthetic nanoscale motors represent a major step toward the development of practical nanomachines. Despite impressive progress, man-made nanomachines lack the efficiency and speed of their biological counterparts. Here we show that the incorporation of carbon nanotubes (CNT) into the platinum (Pt) component of asymmetric metal nanowire motors leads to dramatically accelerated movement in hydrogen-peroxide solutions, with average speeds (50-60 microm/s) approaching those of natural biomolecular motors. Further acceleration to 94 microm/s, with some motors moving above 200 microm/sis observed upon adding hydrazine to the peroxide fuel. Factors influencing the accelerated movement, including the CNT loading and fuel concentration, are examined. Such development of highly efficient and controllable nanomotors offers great promise for self-powered nanoscale transport and delivery systems.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
