Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar;2(3):449-56.
doi: 10.1021/nn700370b.

Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging

Affiliations

Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging

Rajiv Kumar et al. ACS Nano. 2008 Mar.

Abstract

In this paper we report the synthesis and characterization of organically modified silica (ORMOSIL) nanoparticles, covalently incorporating the fluorophore rhodamine-B, and surface-functionalized with a variety of active groups. The synthesized nanoparticles are of ultralow size (diameter approximately 20 nm), highly monodispersed, stable in aqueous suspension, and retain the optical properties of the incorporated fluorophore. The surface of the nanoparticles can be functionalized with a variety of active groups such as hydroxyl, thiol, amine, and carboxyl. The carboxyl groups on the surface were used to conjugate with various bioactive molecules such as transferrin, as well as monoclonal antibodies such as anti-claudin 4 and anti-mesothelin, for targeted delivery to pancreatic cancer cell lines. In vitro experiments have revealed that the cellular uptake of these bioconjugated (targeted) nanoparticles is significantly higher than that of the nonconjugated ones. The ease of surface functionalization and incorporation of a variety of biotargeting molecules, combined with their observed noncytotoxicity, makes these fluorescent ORMOSIL nanoparticles potential candidates as efficient probes for optical bioimaging, both in vitro and in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources