Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Dec;124(6):3471-80.
doi: 10.1121/1.3003087.

Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger's perfectly matched layers

Affiliations
Comparative Study

Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger's perfectly matched layers

Yae-Lin Sheu et al. J Acoust Soc Am. 2008 Dec.

Abstract

This study developed a numerical solution of the general photoacoustic generation equations involving the heat conduction theory and the state, continuity, and Navier-Stokes equations in 2.5D axisymmetric cylindrical coordinates using a finite-difference time-domain scheme. The numerical techniques included staggered grids and Berenger's perfectly matched layers (PMLs), and linear-perturbation analytical solutions were used to validate the simulation results. The numerical results at different detection angles and durations of laser pulses agreed with the theoretical estimates to within an error of 2% in the absolute differences. It was also demonstrated that the simulator can be used to develop advanced photoacoustic imaging methods. The performance of Berenger's PMLs was also assessed by comparisons with the traditional first-order Mur's boundary condition. At the edges of the simulation domain, a ten-layer PML medium with polynomial attenuation coefficient grading from 0 to 5 x 10(6) m(3)/kg s was designed to reduce the reflection to as low as -60 and -32 dB in the axial and radial directions, respectively. The reflections at the axial and radial boundaries were 32 and 7 dB lower, respectively, for the ten-layer PML absorbing layer than for the first-order Mur's boundary condition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources