mTOR-dependent signalling in Alzheimer's disease
- PMID: 19210753
- PMCID: PMC3828871
- DOI: 10.1111/j.1582-4934.2008.00509.x
mTOR-dependent signalling in Alzheimer's disease
Abstract
Neurodegeneration and neurofibrillary degeneration are the two main pathological mechanisms of cognitive impairments in Alzheimer's disease (AD). It is not clear what factors determine the fates of neurons during the progress of the disease. Emerging evidence has suggested that mTOR-dependent signalling is involved in the two types of degeneration in AD brains. This review focuses on the roles of mTOR-dependent signalling in the pathogenesis of AD. It summarizes the recent advancements in the understanding of its roles in neurodegeneration and neurofibrillary degeneration, as well as the evidence achieved when mTOR-related signalling components were tested as potential biomarkers of cognitive impairments in the clinical diagnosis of AD.
Figures


References
-
- Tee AR, Blenis J, Proud CG. Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1. FEBS Lett. 2005;579:4763–8. - PubMed
-
- Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH. A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature. 1989;341:755–7. - PubMed
-
- Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta. 2008;1784:116–32. - PubMed
-
- Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell. 2007;12:487–502. - PubMed
-
- Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110:163–75. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous