Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;16(6):401-13.

Improved cell growth by Bio-Oss/PLA scaffolds for use as a bone substitute

Affiliations
  • PMID: 19212036

Improved cell growth by Bio-Oss/PLA scaffolds for use as a bone substitute

Annalia Asti et al. Technol Health Care. 2008.

Abstract

The objective of this study was to investigate the surface modification of a natural bone substitute, Bio-Oss, coated with a synthetic polymer poly-D,L-lactide (PLA), in order to improve cell growth. Bio-Oss is a natural bone substitute made of the mineralized portion of bovine bone. The material is used mainly to fill bone defects in periodontal and maxillofacial surgery and permit reossification. Poly-a-hydroxyacids such as polylactic acid are receiving an increasing attention due to their ability to retain a great quantity of water, good biocompatibility, low interfacial tension, and minimal mechanical and frictional irritation. All of these features are appealing from the perspective of bioenvironmental mimicking. The human osteosarcoma cell line SAOS-2 was added to the top of scaffolds uncoated or coated with PLA and incubated at 37 degrees in 5% CO(2) for 15 days. PLA-coated scaffolds improved cell growth. Polymer degradation behaviour, extraction and measurement of the extracellular matrix proteins of the cultured scaffolds (such as decorin, fibronectin osteocalcin, osteonectin, osteopontin and type-I and type-III collagen), immunolocalization of bone proteins and morphological analysis of the scaffolds confirmed the bioactive properties of Bio-Oss/PLA4M suggesting that it could be a valuable grafting material.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources