Human head dynamic response to side impact by finite element modeling
- PMID: 1921354
- DOI: 10.1115/1.2894885
Human head dynamic response to side impact by finite element modeling
Abstract
The dynamic response of the human head to side impact was studied by 2-dimensional finite element modeling. Three models were formulated in this study. Model I is an axisymmetric model. It simulated closed shell impact of the human head, and consisted of a single-layered spherical shell filled wiht an inviscid fluid. The other two models (Model II and III) are plane strain models of a coronal section of the human head. Model II approximated a 50th percentile male head by an outer layer to simulate cranial bone and an inviscid interior core to simulate the intracranial contents. The configuration of Model III is the same as Model II but more detailed anatomical features of the head interior were added, such as, cerebral spinal fluid (CSF); falx cerebri, dura, and tentorium. Linear elastic material properties were assigned to all three models. All three models were loaded by a triangular pulse with a peak pressure of 40 kPa, effectively producing a peak force of 1954 N (440 lb). The purpose of this study was to determine the effects of the membranes and that of the mechanical properties of the skull, brain, and membrane on the dynamic response of the brain during side impact, and to compare the pressure distributions from the plane strain model with the axisymmetric model. A parametric study was conducted on Model II to characterize fully its response to impact under various conditions.(ABSTRACT TRUNCATED AT 250 WORDS)
MeSH terms
LinkOut - more resources
Full Text Sources
Medical