Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;41(4):494-504.
doi: 10.1165/rcmb.2008-0251OC. Epub 2009 Feb 12.

Insulin-induced laminin expression promotes a hypercontractile airway smooth muscle phenotype

Affiliations

Insulin-induced laminin expression promotes a hypercontractile airway smooth muscle phenotype

Bart G J Dekkers et al. Am J Respir Cell Mol Biol. 2009 Oct.

Abstract

Airway smooth muscle (ASM) plays a key role in the development of airway hyperresponsiveness and remodeling in asthma, which may involve maturation of ASM cells to a hypercontractile phenotype. In vitro studies have indicated that long-term exposure of bovine tracheal smooth muscle (BTSM) to insulin induces a functional hypercontractile, hypoproliferative phenotype. Similarly, the extracellular matrix protein laminin has been found to be involved in both the induction and maintenance of a contractile ASM phenotype. Using BTSM, we now investigated the role of laminins in the insulin-induced hypercontractile, hypoproliferative ASM phenotype. The results demonstrate that insulin-induced hypercontractility after 8 days of tissue culture was fully prevented by combined treatment of BTSM-strips with the laminin competing peptides Tyr-Ile-Gly-Ser-Arg (YIGSR) and Arg-Gly-Asp-Ser (RGDS). YIGSR also prevented insulin-induced increases in sm-myosin expression and abrogated the suppressive effects of prolonged insulin treatment on platelet-derived growth factor-induced DNA synthesis in cultured cells. In addition, insulin time-dependently increased laminin alpha2, beta1, and gamma1 chain protein, but not mRNA abundance in BTSM strips. Moreover, as previously found for contractile protein accumulation, signaling through PI3-kinase- and Rho kinase-dependent pathways was required for the insulin-induced increase in laminin abundance and contractility. Collectively, our results indicate a critical role for beta1-containing laminins, likely laminin-211, in the induction of a hypercontractile, hypoproliferative ASM phenotype by prolonged insulin exposure. Increased laminin production by ASM could be involved in the increased ASM contractility and contractile protein expression in asthma. Moreover, the results may be of interest for the use of inhaled insulin administrations by diabetics.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources