Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jun 1;3(3):323-9.
doi: 10.1111/j.1365-2826.1991.tb00282.x.

Calcium-activated potassium channels in rat dissociated ventromedial hypothalamic neurons

Affiliations

Calcium-activated potassium channels in rat dissociated ventromedial hypothalamic neurons

J M Treherne et al. J Neuroendocrinol. .

Abstract

Abstract A potassium-selective channel, characterized by a single channel conductance of 160 pS was demonstrated to be present in rat freshly dispersed ventromedial hypothalamic nucleus neurons. The single channel activity was shown to be dependent, using inside-out membrane patches, upon the presence of intracellular calcium ions, with maximal sensitivity between 10(-6) and 10(-6) M[Ca(2+)], and to be modulated by membrane voltage, depolarization causing an increase in open-state probability in the presence of an activating concentration of calcium. Therefore these properties place this channel into the category of a large conductance (maxi-K(+)) calcium-activated potassium (Ca(2+)-K(+)) channel. This channel is active in cell-attached recordings from glucoreceptive cells when depolarized by glucose or tolbutamide with openings often associated with action current repolarization. These openings were shown to be abolished in the presence of extracellular Cd(2+) and La(3+) ions, which block calcium channels, suggesting that extracellular calcium entry upon cell depolarization is responsible for their activation. On a few occasions, a larger conductance (250 pS) Ca(2+)-K(+) channel was observed in inside-out membrane patches isolated from ventromedial hypothalamic nucleus neurons. In contrast to the 160 pS channel, the presence of intracellularly-applied ATP caused a concentration-dependent, reversible inhibition of its open-state probability.

PubMed Disclaimer

LinkOut - more resources