Synaptic AMPA receptor plasticity and behavior
- PMID: 19217372
- PMCID: PMC3917551
- DOI: 10.1016/j.neuron.2009.01.015
Synaptic AMPA receptor plasticity and behavior
Abstract
The ability to change behavior likely depends on the selective strengthening and weakening of brain synapses. The cellular models of synaptic plasticity, long-term potentiation (LTP) and depression (LTD) of synaptic strength, can be expressed by the synaptic insertion or removal of AMPA receptors (AMPARs), respectively. We here present an overview of studies that have used animal models to show that such AMPAR trafficking underlies several experience-driven phenomena-from neuronal circuit formation to the modification of behavior. We argue that monitoring and manipulating synaptic AMPAR trafficking represents an attractive means to study cognitive function and dysfunction in animal models.
References
-
- Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, Snyder EM, Gouras GK. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol. Dis. 2005;20:187–198. - PubMed
-
- Anisman H, Zaharia MD, Meaney MJ, Merali Z. Do early-life events permanently alter behavioral and hormonal responses to stressors? Int. J. Dev. Neurosci. 1998;16:149–164. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases