DevR-mediated adaptive response in Mycobacterium tuberculosis H37Ra: links to asparagine metabolism
- PMID: 19217827
- PMCID: PMC2693488
- DOI: 10.1016/j.tube.2008.12.003
DevR-mediated adaptive response in Mycobacterium tuberculosis H37Ra: links to asparagine metabolism
Abstract
The DevR transcriptional switch that defines the response of Mycobacterium tuberculosis to the lack of oxygen is now well established and likely helps the bacteria shift to a state of persistence. The M. tuberculosis two component signal transduction system (TCS), DevR-DevS, implicated in this transition to latency, is differentially expressed in H37Ra and H37Rv strains. Despite originating from the H37 ancestral strain, H37Ra and H37Rv have significant differences in their growth, physiology, and virulence. To further dissect the role of DevR in growth adaptive processes of M. tuberculosis, we investigated the hypoxic response of the avirulent H37Ra strain. Our results show that the DevR-DevS TCS in H37Ra is responsive to hypoxia and capable of target gene regulation, indicating similar DevR-DevS signaling pathways in H37Ra and H37Rv. A key finding of this study was the constitutive expression of the Rv3134c-devR-devS operon and a subset of sentinel DevR-regulated genes in aerobic cultures of H37Ra but not H37Rv grown in Dubos-Tween-albumin medium. Asparagine and/or catabolites of asparagine metabolism were implicated in aerobic induction of the DevR-DevS TCS in H37Ra. This is the first report of medium-specific constitutive expression of the DevR regulon in an avirulent strain and suggests a potential role for metabolite(s) in the activation of the DevR-DevS TCS.
Figures




References
-
- Gao Q, Kripke K, Arinc Z, Voskuil MI, Small P. Comparative expression studies of a complex phenotype: cord formation in Mycobacterium tuberculosis. Tuberculosis. 2004;84:188–96. - PubMed
-
- Cardona PJ, Soto CY, Martin C, Giquel B, Agusti G, Andreu N, Guirado E, Sirakova T, Kolattukudy P, Julian E, Luquin M. Neutral-red reaction is related to virulence and cell wall methyl-branched lipids in Mycobacterium tuberculosis. Microbes Infect. 2006;8:183–90. - PubMed
-
- He XY, Zhuang YH, Zhang XG, Li GL. Comparative proteome analysis of culture supernatant proteins of Mycobacterium tuberculosis H37Rv and H37Ra. Microbes Infect. 2003;5:851–56. - PubMed
-
- Lee JS, Krause R, Schreiber J, Mollenkopf HJ, Kowall J, Stein R, Jeon BY, Kwak JY, Song MK, Patron JP, Jorg S, Roh K, Cho SN, Kaufmann SH. Mutation in the transcriptional regulator PhoP contributes to avirulence of Mycobacterium tuberculosis H37Ra strain. Cell Host Microbe. 2008;3:97–103. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources