Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb;51(1):84-97.
doi: 10.1002/bimj.200810494.

Finite mixture models for mapping spatially dependent disease counts

Affiliations

Finite mixture models for mapping spatially dependent disease counts

Marco Alfó et al. Biom J. 2009 Feb.

Abstract

A vast literature has recently been concerned with the analysis of variation in disease counts recorded across geographical areas with the aim of detecting clusters of regions with homogeneous behavior. Most of the proposed modeling approaches have been discussed for the univariate case and only very recently spatial models have been extended to predict more than one outcome simultaneously. In this paper we extend the standard finite mixture models to the analysis of multiple, spatially correlated, counts. Dependence among outcomes is modeled using a set of correlated random effects and estimation is carried out by numerical integration through an EM algorithm without assuming any specific parametric distribution for the random effects. The spatial structure is captured by the use of a Gibbs representation for the prior probabilities of component membership through a Strauss-like model. The proposed model is illustrated using real data.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources