Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar;276(6):1750-61.
doi: 10.1111/j.1742-4658.2009.06910.x. Epub 2009 Feb 13.

Engineering thermal stability of L-asparaginase by in vitro directed evolution

Affiliations
Free article

Engineering thermal stability of L-asparaginase by in vitro directed evolution

Georgia A Kotzia et al. FEBS J. 2009 Mar.
Free article

Abstract

L-asparaginase (EC 3.5.1.1, L-ASNase) catalyses the hydrolysis of l-Asn, producing L-Asp and ammonia. This enzyme is an anti-neoplastic agent; it is used extensively in the chemotherapy of acute lymphoblastic leukaemia. In this study, we describe the use of in vitro directed evolution to create a new enzyme variant with improved thermal stability. A library of enzyme variants was created by a staggered extension process using the genes that code for the L-ASNases from Erwinia chrysanthemi and Erwinia carotovora. The amino acid sequences of the parental L-ASNases show 77% identity, but their half-inactivation temperature (T(m)) differs by 10 degrees C. A thermostable variant of the E. chrysamthemi enzyme was identified that contained a single point mutation (Asp133Val). The T(m) of this variant was 55.8 degrees C, whereas the wild-type enzyme has a T(m) of 46.4 degrees C. At 50 degrees C, the half-life values for the wild-type and mutant enzymes were 2.7 and 159.7 h, respectively. Analysis of the electrostatic potential of the wild-type enzyme showed that Asp133 is located at a neutral region on the enzyme surface and makes a significant and unfavourable electrostatic contribution to overall stability. Site-saturation mutagenesis at position 133 was used to further analyse the contribution of this position on thermostability. Screening of a library of random Asp133 mutants confirmed that this position is indeed involved in thermostability and showed that the Asp133Leu mutation confers optimal thermostability.

PubMed Disclaimer

Publication types

LinkOut - more resources