Expression of human luteinizing hormone (LH) receptor: interaction with LH and chorionic gonadotropin from human but not equine, rat, and ovine species
- PMID: 1922095
- DOI: 10.1210/mend-5-6-759
Expression of human luteinizing hormone (LH) receptor: interaction with LH and chorionic gonadotropin from human but not equine, rat, and ovine species
Abstract
Studies on human LH receptors are difficult due to the limited availability of clinical samples. Recent cloning of rat and porcine LH receptor cDNAs indicated that these binding sites are single polypeptides of the G-protein-coupled receptor family with seven transmembrane domains. Based on the conserved sequences of rat and porcine receptors, we performed reverse transcription polymerase chain reaction, using human ovarian mRNA as template and obtained partial human LH receptor cDNA clones. Further screening of a human ovary cDNA library and subsequent ligation of individual cDNA clones generated a human LH receptor cDNA containing the entire amino acid-coding region. Sequence analysis indicated that the human receptor cDNA displays 89% and 82% homology at the nucleotide level with its porcine and rat counterparts, respectively. A region spanning the second extracellular and third transmembrane domains is highly conserved among the human LH, FSH, and TSH receptors. The ovarian LH receptor clone is, however, significantly different from an incompletely spliced LH receptor cDNA recently obtained from a human thyroid library. Unlike the thyroid clone, the ovarian LH receptor cDNA could be expressed in the human fetal kidney cell line (293), and radioligand receptor assay identified high affinity (Kd, 1.2 x 10(-10) M) LH/hCG-binding sites on the plasma membrane. Binding specificity of the human LH receptor was studied using recombinant human CG, LH, and FSH secreted by CHO cells transfected with the respective genes. Human CG and LH displaced [125I]hCG binding with an ED50 of 4.3 and 4.8 ng/ml, respectively. In contrast, recombinant FSH was not effective. Treatment of transfected cells with recombinant gonadotropins also induced dose-dependent increases in extracellular cAMP production (hCG = LH much greater than FSH; ED50 25, 10, and greater than 3000 ng/ml). Although equine, rat, and ovine LH as well as equine CG competed effectively for rat testicular LH receptor binding, these hormones were unable to displace [125I]hCG binding to the human receptor, suggesting evolutionary changes in receptor binding specificity and the importance of using human receptors for clinical studies. Thus, the cloning and expression of the human LH receptor cDNA allowed analysis of interactions between human LH receptor and gonadotropins from diverse species. The present work should provide the basis for future design of therapeutic agents capable of interacting with the human receptor and for understanding the structural basis for LH receptor binding to different gonadotropins.
Similar articles
-
Cloning and functional expression of the luteinizing hormone receptor complementary deoxyribonucleic acid from the marmoset monkey testis: absence of sequences encoding exon 10 in other species.Endocrinology. 1997 Jun;138(6):2481-90. doi: 10.1210/endo.138.6.5196. Endocrinology. 1997. PMID: 9165039
-
Expression of recombinant human follicle-stimulating hormone receptor: species-specific ligand binding, signal transduction, and identification of multiple ovarian messenger ribonucleic acid transcripts.Endocrinology. 1992 Aug;131(2):799-806. doi: 10.1210/endo.131.2.1322283. Endocrinology. 1992. PMID: 1322283
-
Cloning and functional expression of the equine luteinizing hormone/chorionic gonadotrophin receptor.J Endocrinol. 2004 Dec;183(3):551-9. doi: 10.1677/joe.1.05888. J Endocrinol. 2004. PMID: 15590981
-
Interaction, signal generation, signal divergence, and signal transduction of LH/CG and the receptor.Recent Prog Horm Res. 1997;52:431-53; discussion 454. Recent Prog Horm Res. 1997. PMID: 9238862 Review.
-
The gonadotrophin receptors: insights from the cloning of their cDNAs.Oxf Rev Reprod Biol. 1992;14:141-68. Oxf Rev Reprod Biol. 1992. PMID: 1437211 Review.
Cited by
-
Triclocarban enhances testosterone action: a new type of endocrine disruptor?Endocrinology. 2008 Mar;149(3):1173-9. doi: 10.1210/en.2007-1057. Epub 2007 Nov 29. Endocrinology. 2008. PMID: 18048496 Free PMC article.
-
The heterodimeric glycoprotein hormone, GPA2/GPB5, regulates ion transport across the hindgut of the adult mosquito, Aedes aegypti.PLoS One. 2014 Jan 20;9(1):e86386. doi: 10.1371/journal.pone.0086386. eCollection 2014. PLoS One. 2014. PMID: 24466069 Free PMC article.
-
In vivo responses of the primate corpus luteum to luteinizing hormone and chorionic gonadotropin.Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):11002-7. doi: 10.1073/pnas.95.18.11002. Proc Natl Acad Sci U S A. 1998. PMID: 9724819 Free PMC article.
-
Models of glycoprotein hormone receptor interaction.Endocrine. 2005 Apr;26(3):189-205. doi: 10.1385/ENDO:26:3:189. Endocrine. 2005. PMID: 16034173 Review.
-
Novel mutations in LHCGR (luteinizing hormone/choriogonadotropin receptor): expanding the spectrum of mutations responsible for human empty follicle syndrome.J Assist Reprod Genet. 2020 Nov;37(11):2861-2868. doi: 10.1007/s10815-020-01931-2. Epub 2020 Aug 28. J Assist Reprod Genet. 2020. PMID: 32860205 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases