Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Oct;64(5):993-9.
doi: 10.1007/s00280-009-0954-4. Epub 2009 Feb 17.

Distinct mechanistic activity profile of pralatrexate in comparison to other antifolates in in vitro and in vivo models of human cancers

Affiliations
Comparative Study

Distinct mechanistic activity profile of pralatrexate in comparison to other antifolates in in vitro and in vivo models of human cancers

E Izbicka et al. Cancer Chemother Pharmacol. 2009 Oct.

Abstract

Purpose: This study evaluated mechanistic differences of pralatrexate, methotrexate, and pemetrexed.

Methods: Inhibition of dihydrofolate reductase (DHFR) was quantified using recombinant human DHFR. Cellular uptake and folylpolyglutamate synthetase (FPGS) activity were determined using radiolabeled pralatrexate, methotrexate, and pemetrexed in NCI-H460 non-small cell lung cancer (NSCLC) cells. The tumor growth inhibition (TGI) was assessed using MV522 and NCI-H460 human NSCLC xenografts.

Results: Apparent K ( i ) values for DHFR inhibition were 45, 26, and >200 nM for pralatrexate, methotrexate, and pemetrexed, respectively. A significantly greater percentage of radiolabeled pralatrexate entered the cells and was polyglutamylatated relative to methotrexate or pemetrexed. In vivo, pralatrexate showed superior anti-tumor activity in both NSCLC models, with more effective dose-dependent TGI in the more rapidly growing NCI-H460 xenografts.

Conclusions: Pralatrexate demonstrated a distinct mechanistic and anti-tumor activity profile relative to methotrexate and pemetrexed. Pralatrexate exhibited enhanced cellular uptake and increased polyglutamylation, which correlated with increased TGI in NSCLC xenograft models.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Pralatrexate and methotrexate structures
Fig. 2
Fig. 2
Inhibition of DHFR activity by pralatrexate in a cell-free system. a Concentration dependence of DHFR activity. bd Estimation of Ki app for DHFR inhibition by pralatrexate, methotrexate, and pemetrexed, respectively
Fig. 3
Fig. 3
A short-term uptake of radiolabeled antifolates in NCI-H460 cells Drugs were dosed for 15 or 60 min. White bars cells incubated with radiolabeled drug only, black bars cells incubated with radiolabeled drug plus excess unlabeled drug
Fig. 4
Fig. 4
Differential activity of the antifolates on tumor volume and body weight in NCI-H460 and MV522 human tumor xenografts. a Percent change in tumor volume. b Percent change in total body weight. PDX pralatrexate, MTX methotrexate, Alimta pemetrexed

Similar articles

Cited by

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17910632', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17910632/'}]}
    2. O’Connor OA, Hamlin PA, Portlock C, Moskowitz CH, Noy A, Straus DJ, Macgregor-Cortelli B, Neylon E, Sarasohn D, Dumetrescu O et al (2007) Pralatrexate, a novel class of antifol with high affinity for the reduced folate carrier-type 1, produces marked complete and durable remissions in a diversity of chemotherapy refractory cases of T-cell lymphoma. Br J Haematol 139(3):425–428 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '6690069', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/6690069/'}]}
    2. Sirotnak FM, DeGraw JI, Moccio DM, Samuels LL, Goutas LJ (1984) New folate analogs of the 10-deaza-aminopterin series. Basis for structural design and biochemical and pharmacologic properties. Cancer Chemother Pharmacol 12(1):18–25 - PubMed
    1. Sirotnak FM, Schmid FA, Samuels LL, DeGraw JI (1987) 10-Ethyl-10-deaza-aminopterin: structural design and biochemical, pharmacologic, and antitumor properties. NCI Monogr (5):127–131 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s10555-007-9049-z', 'is_inner': False, 'url': 'https://doi.org/10.1007/s10555-007-9049-z'}, {'type': 'PubMed', 'value': '17333344', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17333344/'}]}
    2. Assaraf YG (2007) Molecular basis of antifolate resistance. Cancer Metastasis Rev 26(1):153–181 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1186/ar419', 'is_inner': False, 'url': 'https://doi.org/10.1186/ar419'}, {'type': 'PMC', 'value': 'PMC128935', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC128935/'}, {'type': 'PubMed', 'value': '12106498', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12106498/'}]}
    2. Chan ES, Cronstein BN (2002) Molecular action of methotrexate in inflammatory diseases. Arthritis Res 4(4):266–273 - PMC - PubMed

Publication types

LinkOut - more resources