Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 1;25(7):941-7.
doi: 10.1093/bioinformatics/btp093. Epub 2009 Feb 17.

A new ensemble-based algorithm for identifying breath gas marker candidates in liver disease using ion molecule reaction mass spectrometry

Affiliations

A new ensemble-based algorithm for identifying breath gas marker candidates in liver disease using ion molecule reaction mass spectrometry

M Netzer et al. Bioinformatics. .

Abstract

Motivation: Alcoholic fatty liver disease (AFLD) and non-AFLD (NAFLD) can progress to severe liver diseases such as steatohepatitis, cirrhosis and cancer. Thus, the detection of early liver disease is essential; however, minimal invasive diagnostic methods in clinical hepatology still lack specificity.

Results: Ion molecule reaction mass spectrometry (IMR-MS) was applied to a total of 126 human breath gas samples comprising 91 cases (AFLD, NAFLD and cirrhosis) and 35 healthy controls. A new feature selection modality termed Stacked Feature Ranking (SFR) was developed to identify potential liver disease marker candidates in breath gas samples, relying on the combination of different entropy- and correlation-based feature ranking methods including statistical hypothesis testing using a two-level architecture with a suggestion and a decision layer. We benchmarked SFR against four single feature selection methods, a wrapper and a recently described ensemble method, indicating a significantly higher discriminatory ability of up to 10-15% for the SFR selected gas compounds expressed by the area under the ROC curve (AUC) of 0.85-0.95. Using this approach, we were able to identify unexpected breath gas marker candidates in liver disease of high predictive value. A literature study further supports top-ranked markers to be associated with liver disease. We propose SFR as a powerful tool for biomarker search in breath gas and other biological samples using mass spectrometry.

Availability: The algorithm SFR and IMR-MS datasets are available under http://biomed.umit.at/page.cfm?pageid=526.

PubMed Disclaimer

Publication types