Distinguishing the contributions of implicit and explicit processes to performance of the weather prediction task
- PMID: 19223570
- DOI: 10.3758/MC.37.2.210
Distinguishing the contributions of implicit and explicit processes to performance of the weather prediction task
Abstract
Examinations of the cognitive neuroscience of category learning frequently rely on probabilistic classification-learning tasks-namely, the weather prediction task (WPT)-to study the neural mechanisms of implicit learning. Accumulating evidence suggests that the task also depends on explicit-learning processes. The present investigation manipulated the WPT to assess the specific contributions of implicit- and explicit-learning processes to performance, with a particular focus on how the contributions of these processes change as the task progresses. In Experiment 1, a manipulation designed to disrupt implicit-learning processes had no effect on classification accuracy or the distribution of individual response strategies. In Experiment 2, by contrast, a manipulation designed to disrupt explicit-learning processes substantially reduced classification accuracy and reduced the number of participants who relied on a correct response strategy. The present findings suggest that WPT learning is not an effective tool for investigating nondeclarative learning processes.
Similar articles
-
Probabilistic classification learning with corrective feedback is selectively impaired in early Huntington's disease--evidence for the role of the striatum in learning with feedback.Neuropsychologia. 2012 Jul;50(9):2176-86. doi: 10.1016/j.neuropsychologia.2012.05.021. Epub 2012 May 31. Neuropsychologia. 2012. PMID: 22659110
-
Self-insight in probabilistic category learning.J Gen Psychol. 2013 Jan-Mar;140(1):57-81. doi: 10.1080/00221309.2012.735284. J Gen Psychol. 2013. PMID: 24837346
-
Cortico-striatal contributions to category learning: dissociating the verbal and implicit systems.Behav Neurosci. 2005 Dec;119(6):1438-47. doi: 10.1037/0735-7044.119.6.1438. Behav Neurosci. 2005. PMID: 16420148
-
Understanding the Neural Bases of Implicit and Statistical Learning.Top Cogn Sci. 2019 Jul;11(3):482-503. doi: 10.1111/tops.12420. Epub 2019 Apr 3. Top Cogn Sci. 2019. PMID: 30942536 Free PMC article. Review.
-
Delineating implicit and explicit processes in neurofeedback learning.Neurosci Biobehav Rev. 2020 Nov;118:681-688. doi: 10.1016/j.neubiorev.2020.09.003. Epub 2020 Sep 10. Neurosci Biobehav Rev. 2020. PMID: 32918947 Free PMC article. Review.
Cited by
-
Paired-Associate and Feedback-Based Weather Prediction Tasks Support Multiple Category Learning Systems.Front Psychol. 2016 Jun 30;7:1017. doi: 10.3389/fpsyg.2016.01017. eCollection 2016. Front Psychol. 2016. PMID: 27445958 Free PMC article.
-
Probing Implicit Learning in Obsessive-Compulsive Disorder: Moderating Role of Medication on the Weather Prediction Task.J Obsessive Compuls Relat Disord. 2016 Apr;9:90-95. doi: 10.1016/j.jocrd.2016.03.003. J Obsessive Compuls Relat Disord. 2016. PMID: 27134820 Free PMC article.
-
The subthalamic nucleus modulates the early phase of probabilistic classification learning.Exp Brain Res. 2014 Jul;232(7):2255-62. doi: 10.1007/s00221-014-3916-y. Epub 2014 Apr 10. Exp Brain Res. 2014. PMID: 24718493
-
Strategy use in probabilistic categorization by rhesus macaques (Macaca mulatta) and capuchin monkeys (Cebus [Sapajus] apella).J Comp Psychol. 2020 Nov;134(4):379-390. doi: 10.1037/com0000221. Epub 2020 May 14. J Comp Psychol. 2020. PMID: 32406716 Free PMC article.
-
The Visual Advantage Effect in Comparing Uni-Modal and Cross-Modal Probabilistic Category Learning.J Intell. 2023 Nov 27;11(12):218. doi: 10.3390/jintelligence11120218. J Intell. 2023. PMID: 38132836 Free PMC article.