Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar;68(3):274-85.
doi: 10.1097/NEN.0b013e31819a3e8c.

Novel genomic alterations and mechanisms associated with tumor progression in oligodendroglioma and mixed oligoastrocytoma

Affiliations

Novel genomic alterations and mechanisms associated with tumor progression in oligodendroglioma and mixed oligoastrocytoma

David Blesa et al. J Neuropathol Exp Neurol. 2009 Mar.

Abstract

Combined 1p/19q deletions are very prevalent in oligodendrogliomas (OGs) and, to a lesser extent, in oligoastrocytomas (OAs). These losses are associated with responsiveness to therapy. Using array-based comparative genomic hybridization, we screened for recurrent genomic alterations in OG and oligoastrocytoma subtypes on chromosome 19. Concomitant 1p/19q loss was detected in most of the tumors with allelic loss, but array-based comparative genomic hybridization revealed some tumors to have unrelated 1p/19q arm losses, suggesting alternative mechanisms of loss to that related to the reported t(1;19) translocation. Analyses of 1p/19q loss by fluorescence in situ hybridization and loss of heterozygosity assays and correlations of genomic data with the Ki-67 proliferation marker were also performed. Four 1q (or 19p) and 2 1p (or 19q) fluorescence in situ hybridization probe signals together with homozygosity of the 1p/19q microsatellites suggested a hypothetical mechanism of genome duplication consecutive to the loss of the derivative chromosome der(1p;19q) from the t(1;19)(1q;19p) translocation. This genome duplication was frequent in high-grade OGs and was strongly correlated with Ki-67 expression; thus, it could be related to tumor progression. Finally, in addition to the frequent 1p/19q loss, we report a novel 17q amplified region in OGs with BIRC5 as one of the possible candidate target genes of the amplicon.

PubMed Disclaimer

Publication types