Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Sep;29(3):329-40.

Progression of experimental infantile hydrocephalus and effects of ventriculoperitoneal shunts: an analysis correlating magnetic resonance imaging with gross morphology

Affiliations
  • PMID: 1922699

Progression of experimental infantile hydrocephalus and effects of ventriculoperitoneal shunts: an analysis correlating magnetic resonance imaging with gross morphology

J P McAllister 2nd et al. Neurosurgery. 1991 Sep.

Abstract

Although previous ultrasonographic studies did monitor ventricular enlargement successfully in experimentally-induced models of feline hydrocephalus, the resolution of neuroanatomic detail was relatively poor after placement of a ventriculoperitoneal (VP) shunt because the skull had ossified over the coronal sutures. Therefore, the present study employed magnetic resonance imaging to follow the progression of ventriculomegaly more accurately, as well as to evaluate the compensatory effects of VP shunting. Hydrocephalus was induced in kittens between 7 and 10 days old by injection of kaolin into the cisterna magna. Age-matched controls received similar injections of saline. At 9 to 14 days after the kaolin injection, the hydrocephalic animals received VP shunts. Anesthetized kittens were scanned at various intervals before and after shunt placement and were killed for morphological correlation. The features observed on the magnetic resonance imaging scans were consistent with the gross morphological changes that accompanied ventricular enlargement. The lateral ventricle began to enlarge as early as 1 day after the kaolin injection, and within 3 days, both the occipital and temporal horns, along with the 4th ventricle, showed signs of moderate dilatation. By 5 days, a bilateral communication had been established through the septum pellucidum. Continued expansion of the ventricular system occurred from 6 to 20 days after injection, to the point where the cerebral cortex was reduced to less than 25% of its original thickness. The internal capsule was stretched and edematous, the caudate nucleus was compressed ventrolaterally, and the cerebellar hemispheres were eroded and/or compressed. Animals in which shunts were successfully placed demonstrated a dramatic improvement in behavior, and a reduction of about 50% in the size of the lateral ventricles within 2 days. In some cases, the lateral ventricles became slit-like within 1 week. When they were killed, about half of the animals that received shunts exhibited mild to moderate ventriculomegaly. These results indicate that magnetic resonance imaging is an excellent method for visualizing the morphological changes associated with this animal model, that these alterations occur soon after the onset of hydrocephalus, and that VP shunting can successfully reduce ventriculomegaly.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources