Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun;145(6):721-31.
doi: 10.1093/jb/mvp029. Epub 2009 Feb 23.

Guanidine hydrochloride- and urea-induced unfolding of Toxoplasma gondii ferredoxin-NADP+ reductase: stabilization of a functionally inactive holo-intermediate

Affiliations

Guanidine hydrochloride- and urea-induced unfolding of Toxoplasma gondii ferredoxin-NADP+ reductase: stabilization of a functionally inactive holo-intermediate

Kulwant Singh et al. J Biochem. 2009 Jun.

Abstract

Usually during the folding/unfolding of flavoproteins, an apo-intermediate is stabilized before global unfolding of the enzymes occurs. However, stabilization of a holo-intermediate has also been reported for a few flavoproteins. We have studied the unfolding of Toxoplasma gondii ferredoxin-NADP+ reductase (TgFNR) using GdnHCl and urea. A functionally inactive holo-intermediate of the enzyme was found to be stabilized during this unfolding process. The intermediate species had cofactor FAD bound to it, but it showed free movement due to which the stabilized intermediates were functionally inactive. The native TgFNR behaves cooperatively with the two structural domains interacting strongly with each other. The denaturants GdnHCl and urea, at low concentrations, were found to interact selectively with the NADP+-binding domain of TgFNR and to induce structural modifications in it. These selective modifications in the protein molecule lead to loss of interactions between two domains and the enzyme behaved non-cooperatively resulting in stabilization of an intermediate species. Significant differences in the structural properties of the GdnHCl- and urea-stabilized holo-intermediates of TgFNR were observed. Comparison of the unfolding pathway of TgFNR (a plant-type FNR) with that of FprA (a GR-type FNR) demonstrates that they follow very different pathways of unfolding.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources