Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr;53(4):654-60.
doi: 10.1161/HYPERTENSIONAHA.108.125831. Epub 2009 Feb 23.

Heterogeneity of L- and T-channels in the vasculature: rationale for the efficacy of combined L- and T-blockade

Affiliations

Heterogeneity of L- and T-channels in the vasculature: rationale for the efficacy of combined L- and T-blockade

Christine J Ball et al. Hypertension. 2009 Apr.

Abstract

Clinical studies suggest that T-type Ca(2+) channel blockade may have incremental benefits over conventional L-channel blockade, particularly in microvascular disorders. This study examined functional vasomotor differences in L- and T-channel blockade between large and small vessels and compared the abundance of the L- and T-type channels in these vessels. The inhibition of endothelin-1 and potassium-induced vascular contractile responses by L-channel blockers (verapamil and nifedipine) was compared with combined L- and T-channel blockers (mibefradil and efonidipine) in large (rat aorta) and small (rat mesenteric and human subcutaneous) vessels using wire myography. All 4 of the Ca(2+) channel blockers inhibited contractile responses to a similar extent in large rat vessels; however, in rat microvessels, the combined L- and T-channel blockers produced significantly greater inhibition of contraction than L-channel blockers alone. The significance of this differential T-channel effect in microvessels was further supported by the following: (1) a greater abundance of T-channels compared with L-channels in microvessels but not in large vessels; (2) demonstration of divergent Ca(2+) channel blocker responses in human microvessels; (3) incremental inhibition of constrictor responses with combined L- and T-Ca(2+) channel blockers despite maximal L-channel blockade; (4) the use of structurally diverse Ca(2+) channel blockers with varied affinity for L- and T-channels; (5) the use of pharmacodynamically and therapeutically appropriate Ca(2+) channel blocker concentrations; (6) confirmation of contractile agonist independent responses; and (7) exclusion of an endothelium-dependent mechanism. We propose that T-type channels play an important role in regulating contractile responses in the microvasculature and, therefore, are a potential therapeutic target.

PubMed Disclaimer

Comment in

Publication types

MeSH terms