Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar;15(3):482-5.
doi: 10.3201/eid1503.081013.

Detection of novel SARS-like and other coronaviruses in bats from Kenya

Affiliations

Detection of novel SARS-like and other coronaviruses in bats from Kenya

Suxiang Tong et al. Emerg Infect Dis. 2009 Mar.

Abstract

Diverse coronaviruses have been identified in bats from several continents but not from Africa. We identified group 1 and 2 coronaviruses in bats in Kenya, including SARS-related coronaviruses. The sequence diversity suggests that bats are well-established reservoirs for and likely sources of coronaviruses for many species, including humans.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Map of Kenya showing the locations of 17 bat collection sites.
Figure 2
Figure 2
Phylogenetic tree generated using Bayesian Markov Chain Monte Carlo analysis implemented in Bayesian Evolutionary Analysis Sampling Trees (BEAST; http://beast.bio.ed.ac.uk) by using a 121-nt fragment of the RdRp gene 1b from 39 coronaviruses (CoVs) in bats from Kenya. CoVs from this study are shown in boldface; an additional 47 selected human and animal coronaviruses from the National Center for Biotechnology Information database are included. The Bayesian posterior probabilities were given for deeper nodes. CoV groups (1 to 3) based on International Committee on Taxonomy of Viruses recommendation are indicated. Bat coronaviruses from the People’s Republic of China (*), northern Germany (†), and North America (‡) are labeled. Scale bar indicates number of nucleotide substitutions per site.

Similar articles

Cited by

References

    1. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953–66. 10.1056/NEJMoa030781 - DOI - PubMed
    1. Che XY, Hao W, Qiu LW, Pan YX, Liao ZY, Xu H, et al. Antibody response of patients with severe acute respiratory syndrome (SARS) to nucleocapsid antigen of SARS-associated coronavirus [in Chinese]. Academic Journal of the First Medical College of PLA. 2003;23:637–9. - PubMed
    1. Woo PC, Lau SK, Yuen KY. Infectious diseases emerging from Chinese wet-markets: zoonotic origins of severe respiratory viral infections. Curr Opin Infect Dis. 2006;19:401–7. 10.1097/01.qco.0000244043.08264.fc - DOI - PMC - PubMed
    1. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302:276–8. 10.1126/science.1087139 - DOI - PubMed
    1. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102:14040–5. 10.1073/pnas.0506735102 - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources