Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography
- PMID: 19241418
- PMCID: PMC6871153
- DOI: 10.1002/hbm.20739
Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography
Abstract
The function of the corpus callosum (CC) is to distribute perceptual, motor, cognitive, learned, and voluntary information between the two hemispheres of the brain. Accurate parcellation of the CC according to fiber composition and fiber connection is of upmost important. In this work, population-based probabilistic connection topographies of the CC, in the standard Montreal Neurological Institute (MNI) space, are estimated by incorporating anatomical cytoarchitectural parcellation with high angular resolution diffusion imaging (HARDI) tractography. First, callosal fibers are extracted using multiple fiber assignment by continuous tracking algorithm based on q-ball imaging (QBI), on 12 healthy and young subjects. Then, the fiber tracts are aligned in the standard MNI coordinate system based on a tract-based transformation scheme. Next, twenty-eight Brodmann's areas on the surface of cortical cortex are registered to the MNI space to parcellate the aligned callosal fibers. Finally, the population-based topological subdivisions of the midsagittal CC to each cortical target are then mapped. And the resulting subdivisions of the CC that connect to the frontal and somatosensory associated cortex are also showed. To our knowledge, it is the first topographic subdivisions of the CC done using HARDI tractography and cytoarchitectonic information. In conclusion, this sophisticated topography of the CC may serve as a landmark to further understand the correlations between the CC, brain intercommunication, and functional cytoarchitectures.
Figures








Similar articles
-
Topography of the human corpus callosum revisited--comprehensive fiber tractography using diffusion tensor magnetic resonance imaging.Neuroimage. 2006 Sep;32(3):989-94. doi: 10.1016/j.neuroimage.2006.05.044. Epub 2006 Jul 18. Neuroimage. 2006. PMID: 16854598
-
Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI.Hum Brain Mapp. 2008 May;29(5):503-16. doi: 10.1002/hbm.20314. Hum Brain Mapp. 2008. PMID: 17133394 Free PMC article.
-
Variability of homotopic and heterotopic callosal connectivity in partial agenesis of the corpus callosum: a 3T diffusion tensor imaging and Q-ball tractography study.AJNR Am J Neuroradiol. 2009 Feb;30(2):282-9. doi: 10.3174/ajnr.A1361. Epub 2008 Nov 11. AJNR Am J Neuroradiol. 2009. PMID: 19001538 Free PMC article.
-
The human motor corpus callosum.Rev Neurosci. 2008;19(6):451-66. doi: 10.1515/revneuro.2008.19.6.451. Rev Neurosci. 2008. PMID: 19317183 Review.
-
Toward a Common Terminology for the Thalamus.Front Neuroanat. 2019 Jan 11;12:114. doi: 10.3389/fnana.2018.00114. eCollection 2018. Front Neuroanat. 2019. PMID: 30687023 Free PMC article. Review.
Cited by
-
Degeneration of corpus callosum and recovery of motor function after stroke: a multimodal magnetic resonance imaging study.Hum Brain Mapp. 2012 Dec;33(12):2941-56. doi: 10.1002/hbm.21417. Epub 2011 Oct 22. Hum Brain Mapp. 2012. PMID: 22020952 Free PMC article.
-
Altered corpus callosum structure in adolescents with cerebral palsy: connection to gait and balance.Brain Struct Funct. 2023 Nov;228(8):1901-1915. doi: 10.1007/s00429-023-02692-1. Epub 2023 Aug 24. Brain Struct Funct. 2023. PMID: 37615759 Free PMC article.
-
Topological arrangement of coronal segments in human callosal fibers in vivo tractography.Front Neuroanat. 2023 May 31;17:1097247. doi: 10.3389/fnana.2023.1097247. eCollection 2023. Front Neuroanat. 2023. PMID: 37325424 Free PMC article.
-
Interhemispheric functional connectivity: an fMRI study in callosotomized patients.Front Hum Neurosci. 2024 May 15;18:1363098. doi: 10.3389/fnhum.2024.1363098. eCollection 2024. Front Hum Neurosci. 2024. PMID: 38812473 Free PMC article.
-
Mapping corpus callosum surface reduction in fetal alcohol spectrum disorders with sulci and connectivity-based parcellation.Front Neurosci. 2023 Jun 9;17:1188367. doi: 10.3389/fnins.2023.1188367. eCollection 2023. Front Neurosci. 2023. PMID: 37360177 Free PMC article.
References
-
- Abe O,Masutani Y,Aoki S,Yamasue H,Yamada H,Kasai K,Mori H,Hayashi N,Masumoto T,Ohtomo K ( 2004): Topography of the human corpus callosum using diffusion tensor tractography. J Comput Assist Tomogr 28: 533–539. - PubMed
-
- Alexander DC ( 2005): Multiple‐fiber reconstruction algorithms for diffusion MRI. Ann N Y Acad Sci 1064: 113–133. - PubMed
-
- Alexander DC,Pierpaoli C,Basser PJ,Gee JC ( 2001): Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans Med Imaging 20: 1131–1139. - PubMed
-
- Alexander AL,Lee JE,Lazar M,Boudos R,DuBray MB,Oakes TR,Miller JN,Lu J,Jeong EK,McMahon WM,Bigler ED,Lainhart JE ( 2007): Diffusion tensor imaging of the corpus callosum in Autism. Neuroimage 34: 61–73. - PubMed
-
- Amunts K,Malikovic A,Mohlberg H,Schormann T,Zilles K ( 2000): Brodmann's areas 17 and 18 brought into stereotaxic space—Where and how variable? Neuroimage 11: 66–84. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources