Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Mar;20(2):439-42.
doi: 10.1097/SCS.0b013e31819b9868.

X-linked hypophosphatemic rickets and craniosynostosis

Affiliations
Review

X-linked hypophosphatemic rickets and craniosynostosis

Ananth S Murthy. J Craniofac Surg. 2009 Mar.

Abstract

Bone mineralization is possible via complex interactions among fibroblast growth factor 23 (FGF23), phosphate-regulating gene with homologies to endopeptidases on the X-chromosome (PHEX), and matrix extracellular phosphoglycoprotein. A loss-of-function mutation in PHEX disrupts this interaction leading to hypophosphatemic rickets. X-linked hypophosphatemic (XLH) rickets is the most common form of metabolic rickets, and there have been reports linking XLH rickets to craniosynostosis. A clinical report of a patient with XLH rickets and craniosynostosis is presented with a review of literature. A review of physiology of bone mineralization reveals that, at high levels, there is cross-binding of FGF23 with FGF receptors 2 and 3 at the cranial sutures. This may be the reason for the common association of craniosynostosis and XLH rickets. There are complex interactions of proteins required for mineralization, proteins inhibiting mineralization, bone remodeling, and bone-renal phosphate homeostasis. Clarification of this pathway and reproducibility in a mouse model may pave the way for medical prevention of craniosynostosis in rickets.

PubMed Disclaimer

MeSH terms

LinkOut - more resources