Working memory dynamics and spontaneous activity in a flip-flop oscillations network model with a Milnor attractor
- PMID: 19242823
- PMCID: PMC2678202
- DOI: 10.1007/s11571-009-9078-0
Working memory dynamics and spontaneous activity in a flip-flop oscillations network model with a Milnor attractor
Abstract
Many cognitive tasks require the ability to maintain and manipulate simultaneously several chunks of information. Numerous neurobiological observations have reported that this ability, known as the working memory, is associated with both a slow oscillation (leading to the up and down states) and the presence of the theta rhythm. Furthermore, during resting state, the spontaneous activity of the cortex exhibits exquisite spatiotemporal patterns sharing similar features with the ones observed during specific memory tasks. Here to enlighten neural implication of working memory under these complicated dynamics, we propose a phenomenological network model with biologically plausible neural dynamics and recurrent connections. Each unit embeds an internal oscillation at the theta rhythm which can be triggered during up-state of the membrane potential. As a result, the resting state of a single unit is no longer a classical fixed point attractor but rather the Milnor attractor, and multiple oscillations appear in the dynamics of a coupled system. In conclusion, the interplay between the up and down states and theta rhythm endows high potential in working memory operation associated with complexity in spontaneous activities.
Figures








Similar articles
-
Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network.Brain Res. 2013 Nov 6;1536:68-87. doi: 10.1016/j.brainres.2013.08.002. Epub 2013 Aug 9. Brain Res. 2013. PMID: 23939226
-
Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model.J Cogn Neurosci. 2011 Oct;23(10):3008-20. doi: 10.1162/jocn_a_00029. Epub 2011 Mar 31. J Cogn Neurosci. 2011. PMID: 21452933
-
Trained recurrent neural networks develop phase-locked limit cycles in a working memory task.PLoS Comput Biol. 2024 Feb 5;20(2):e1011852. doi: 10.1371/journal.pcbi.1011852. eCollection 2024 Feb. PLoS Comput Biol. 2024. PMID: 38315736 Free PMC article.
-
Does cross-frequency phase coupling of oscillatory brain activity contribute to a better understanding of visual working memory?Br J Psychol. 2019 May;110(2):245-255. doi: 10.1111/bjop.12340. Epub 2018 Aug 5. Br J Psychol. 2019. PMID: 30079531 Review.
-
Control mechanisms in working memory: a possible function of EEG theta oscillations.Neurosci Biobehav Rev. 2010 Jun;34(7):1015-22. doi: 10.1016/j.neubiorev.2009.12.006. Epub 2009 Dec 16. Neurosci Biobehav Rev. 2010. PMID: 20006645 Review.
Cited by
-
Investigation of changes in EEG complexity during memory retrieval: the effect of midazolam.Cogn Neurodyn. 2012 Dec;6(6):537-46. doi: 10.1007/s11571-012-9214-0. Epub 2012 Jul 22. Cogn Neurodyn. 2012. PMID: 24294337 Free PMC article.
-
A Comparative Study of the Impact of Theta-Burst and High-Frequency Stimulation on Memory Performance.Front Hum Neurosci. 2016 Feb 3;10:19. doi: 10.3389/fnhum.2016.00019. eCollection 2016. Front Hum Neurosci. 2016. PMID: 26869903 Free PMC article.
-
Phase-Locked Stimulation during Cortical Beta Oscillations Produces Bidirectional Synaptic Plasticity in Awake Monkeys.Curr Biol. 2018 Aug 20;28(16):2515-2526.e4. doi: 10.1016/j.cub.2018.07.009. Epub 2018 Aug 9. Curr Biol. 2018. PMID: 30100342 Free PMC article.
-
Transitory memory retrieval in a biologically plausible neural network model.Cogn Neurodyn. 2013 Oct;7(5):409-16. doi: 10.1007/s11571-013-9244-2. Epub 2013 Feb 1. Cogn Neurodyn. 2013. PMID: 24427215 Free PMC article.
-
A hybrid model for the neural representation of complex mental processing in the human brain.Cogn Neurodyn. 2013 Apr;7(2):89-103. doi: 10.1007/s11571-012-9220-2. Epub 2012 Sep 28. Cogn Neurodyn. 2013. PMID: 24427194 Free PMC article. Review.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/BF00365229', 'is_inner': False, 'url': 'https://doi.org/10.1007/bf00365229'}, {'type': 'PubMed', 'value': '901864', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/901864/'}]}
- Amari S (1977) Neural theory of association and concept-formation. Biol Cybern 26:175–185 - PubMed
-
- None
- Amit DJ (1989) Modelling brain function: the world of attractor networks. Cambridge University Press, New York
-
- None
- Baddeley AD (1986) Working memory. Oxford University Press, New York
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15339654', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15339654/'}]}
- Brunel N, Hakim V, Isope P, Nadal JP, Barbour B (2004) Optimal information storage and the distribution of synaptic weights; perceptron versus purkinje cell. Neuron 43:745–757 - PubMed
LinkOut - more resources
Full Text Sources
Research Materials