Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb;24(1):145-54.
doi: 10.1089/cbr.2008.0543.

Quantitative analysis of 90Y Bremsstrahlung SPECT-CT images for application to 3D patient-specific dosimetry

Affiliations

Quantitative analysis of 90Y Bremsstrahlung SPECT-CT images for application to 3D patient-specific dosimetry

Cinzia Fabbri et al. Cancer Biother Radiopharm. 2009 Feb.

Abstract

Aim: The aim of this study was to evaluate the accuracy of the activity quantification of single-photon emission computed tomography/computed tomography (SPECT-CT) (90)Y-Bremsstrahlung images and to validate the S-voxel method.

Methods: An anthropomorphic torso phantom with radioactive inserts ((90)Y) was acquired by SPECT-CT. Constant calibration factors (cps/MBq) for the quantification were evaluated, considering different volume, shape, position inside the phantom, activity concentration and background, and distance from detectors. S-voxel values (EGSnrc) were implemented in MATLAB R0086 USA software. Dose comparisons between S-voxel and the conventional Medical Internal Radiation Dose method were repeated in a group of 11 patients administered with (90)Y-DOTATATE.

Results: Using the appropriate calibration factors to recover the volume variability, the error about the measurement repeatability and the activity variation was within 4%. The variability of activity quantification, depending on the position in the phantom, detector distance, and background, was <10%, <5%, and <10%, respectively. The absorbed-dose values calculated by OLINDA were in agreement with the mean dose values obtained by the S-voxel method (difference, <10%).

Conclusions: The results confirm that, with the hybrid SPECT-CT system, quantitative analysis of SPECT (90)Y-Bremsstrahlung images and the generation of three-dimensional dose distributions are feasible. The improved analysis of Bremsstrahlung images could have a notable clinical impact, allowing to address the dosimetric verification to patients during the course of therapy.

PubMed Disclaimer