A2B5 cells from human glioblastoma have cancer stem cell properties
- PMID: 19243384
- PMCID: PMC8094826
- DOI: 10.1111/j.1750-3639.2009.00269.x
A2B5 cells from human glioblastoma have cancer stem cell properties
Abstract
Glioblastomas, like other cancers, harbor small cell populations with the capability of sustaining tumor formation. These cells are referred to as cancer stem cells. We isolated cells expressing the surface marker A2B5 from three human glioblastomas (GBM) and showed that after grafting into nude mice, they generated dense and highly infiltrative tumors. Then, we extensively studied A2B5(+) cells isolated from 11 human GBM. These cells display neurosphere-like, self-renewal, asymmetrical cell division properties and have multipotency capability. Stereotactic xenografts of dissociated A2B5(+)-derived secondary spheres revealed that as few as 1000 cells produced a tumor. Moreover, flow cytometry characterization of A2B5(+)-derived spheres revealed three distinct populations of cells: A2B5(+)/CD133(+), A2B5(+)/CD133(-) and A2B5(-)/CD133(-), with striking proportion differences among GBM. Both A2B5(+)/CD133(+) and A2B5(+)/CD133(-) cell fractions displayed a high proliferative index, the potential to generate spheres and produced tumors in nude mice. Finally, we generated two green fluorescent protein-cell lines that display--after serum induction--distinct proliferative and migratory properties, and differ in their CD133 level of expression. Taken together, our results suggest that transformed A2B5(+) cells are crucial for the initiation and maintenance of GBM, although CD133 expression is more involved in determining the tumor's behavior.
Figures





Similar articles
-
Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors.J Neurooncol. 2009 Aug;94(1):1-19. doi: 10.1007/s11060-009-9919-z. Epub 2009 May 26. J Neurooncol. 2009. PMID: 19468690 Free PMC article.
-
Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas.Neurosurgery. 2008 Feb;62(2):505-14; discussion 514-5. doi: 10.1227/01.neu.0000316019.28421.95. Neurosurgery. 2008. PMID: 18382330
-
CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles.Cancer Res. 2007 May 1;67(9):4010-5. doi: 10.1158/0008-5472.CAN-06-4180. Cancer Res. 2007. PMID: 17483311
-
CD133 as a marker for regulation and potential for targeted therapies in glioblastoma multiforme.Neurosurg Clin N Am. 2012 Jul;23(3):391-405. doi: 10.1016/j.nec.2012.04.011. Epub 2012 Jun 5. Neurosurg Clin N Am. 2012. PMID: 22748652 Review.
-
Cancer stem cells and brain tumors.Clin Transl Oncol. 2008 May;10(5):262-7. doi: 10.1007/s12094-008-0195-8. Clin Transl Oncol. 2008. PMID: 18490242 Review.
Cited by
-
Biological characteristics of a new human glioma cell line transformed into A2B5(+) stem cells.Mol Cancer. 2015 Apr 2;14:75. doi: 10.1186/s12943-015-0343-z. Mol Cancer. 2015. PMID: 25879429 Free PMC article.
-
The Autophagy Status of Cancer Stem Cells in Gliobastoma Multiforme: From Cancer Promotion to Therapeutic Strategies.Int J Mol Sci. 2019 Aug 5;20(15):3824. doi: 10.3390/ijms20153824. Int J Mol Sci. 2019. PMID: 31387280 Free PMC article. Review.
-
Glycolipids Recognized by A2B5 Antibody Promote Proliferation, Migration, and Clonogenicity in Glioblastoma Cells.Cancers (Basel). 2019 Aug 28;11(9):1267. doi: 10.3390/cancers11091267. Cancers (Basel). 2019. PMID: 31466399 Free PMC article.
-
Differential analysis of glioblastoma multiforme proteome by a 2D-DIGE approach.Proteome Sci. 2011 Apr 6;9(1):16. doi: 10.1186/1477-5956-9-16. Proteome Sci. 2011. PMID: 21470419 Free PMC article.
-
Eradicating the tumor "seeds": nanomedicines-based therapies against cancer stem cells.Daru. 2023 Jun;31(1):83-94. doi: 10.1007/s40199-023-00456-0. Epub 2023 Mar 27. Daru. 2023. PMID: 36971921 Free PMC article. Review.
References
-
- Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. - PubMed
-
- Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ et al (2007) CD133(+) and CD133(−) glioblastoma‐derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015. - PubMed
-
- Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82. - PubMed
-
- Colin C, Baeza N, Tong S, Bouvier C, Quilichini B, Durbec P, Figarella‐Branger D (2006) In vitro identification and functional characterization of glial precursor cells in human gliomas. Neuropathol Appl Neurobiol 32:189–202. - PubMed
-
- Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al (2004) Isolation and characterization of tumorigenic, stem‐like neural precursors from human glioblastomas. Cancer Res 64:7011–7021. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials