Production of 1-carbon units from glycine is extensive in healthy men and women
- PMID: 19244382
- PMCID: PMC2666360
- DOI: 10.3945/jn.108.103580
Production of 1-carbon units from glycine is extensive in healthy men and women
Abstract
Glycine undergoes decarboxylation in the glycine cleavage system (GCS) to yield CO(2), NH(3), and a 1-carbon unit. CO(2) also can be generated from the 2-carbon of glycine by 10-formyltetrahydrofolate-dehydrogenase and, after glycine-to-serine conversion by serine hydroxymethyltransferase, from the tricarboxylic acid cycle. To evaluate the relative fates of glycine carbons in CO(2) generation in healthy volunteers (3 male, 3 female, aged 21-26 y), primed, constant infusions were conducted using 9.26 micromol x h(-1) x kg(-1) of [1,2-(13)C]glycine and 1.87 micromol x h(-1) x kg(-1) of [5,5,5-(2)H(3)]leucine, followed by an infusion protocol using [1-(13)C]glycine as the glycine tracer. The time period between the infusion protocols was >6 mo. In vivo rates of whole-body glycine and leucine flux were nearly identical in protocols with [1,2-(13)C]glycine and [5,5,5-(2)H(3)]leucine and with [1-(13)C]glycine and [5,5,5-(2)H(3)]leucine tracers, which showed high reproducibility between the tracer protocols. Using the [1-(13)C]glycine tracer, breath CO(2) data showed a total rate of glycine decarboxylation of 96 +/- 8 micromol x h(-1) x kg(-1), which was 22 +/- 3% of whole-body glycine flux. In contrast, infusion of [1,2-(13)C]glycine yielded a glycine-to-CO(2) flux of 146 +/- 37 micromol x h(-1) x kg(-1) (P = 0.026). By difference, this implies a rate of CO(2) formation from the glycine 2-carbon of 51 +/- 40 micromol x h(-1) x kg(-1), which accounts for approximately 35% of the total CO(2) generated in glycine catabolism. These findings also indicate that approximately 65% of the CO(2) generation from glycine occurs by decarboxylation, primarily from the GCS. Further, these results suggest that the GCS is responsible for the entry of 5,10-methylenetetrahydrofolate into 1-carbon metabolism at a very high rate ( approximately 96 micromol x h(-1) x kg(-1)), which is approximately 20 times the demand for methyl groups for homocysteine remethylation.
Figures
References
-
- Kikuchi G. The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem. 1973;1:169–87. - PubMed
-
- Bailey LB, Gregory JF III. Folate metabolism and requirements. J Nutr. 1999;129:779–82. - PubMed
-
- Garcia-Martinez LF, Appling DR. Characterization of the folate-dependent mitochondrial oxidation of carbon 3 of serine. Biochemistry. 1993;32:4671–6. - PubMed
-
- Cuskelly GJ, Stacpoole PW, Williamson J, Baumgartner TG, Gregory JF III. Deficiencies of folate and vitamin B(6) exert distinct effects on homocysteine, serine, and methionine kinetics. Am J Physiol Endocrinol Metab. 2001;281:E1182–90. - PubMed
