Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar 25;131(11):4051-62.
doi: 10.1021/ja808699c.

Combined experimental and theoretical study of long-range interactions modulating dimerization and activity of yeast geranylgeranyl diphosphate synthase

Affiliations

Combined experimental and theoretical study of long-range interactions modulating dimerization and activity of yeast geranylgeranyl diphosphate synthase

Chia-Hsiang Lo et al. J Am Chem Soc. .

Abstract

We present here how two amino acid residues in the first helix distal from the main dimer interface modulate the dimerization and activity of a geranylgeranyl diphosphate synthase (GGPPs). The enzyme catalyzes condensation of farnesyl diphosphate and isopentenyl diphosphate to generate a C(20) product as a precursor for chlorophylls, carotenoids, and geranylgeranylated proteins. The 3D structure of GGPPs from Saccharomyces cerevisiae reveals an unique positioning of the N-terminal helix A, which protrudes into the other subunit and stabilizes dimerization, although it is far from the main dimer interface. Through a series of mutants that were characterized by analytic ultracentrifugation (AUC), the replacement of L8 and I9 at this helix with Gly was found sufficient to disrupt the dimer into a monomer, leading to at least 10(3)-fold reduction in activity. Molecular dynamics simulations and free energy decomposition analyses revealed the possible effects of the mutations on the protein structures and several critical interactions for maintaining dimerization. Further site-directed mutagenesis and AUC studies elucidated the molecular mechanism for modulating dimerization and activity by long-range interactions.

PubMed Disclaimer

Publication types

Substances