Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun 5;155(1-3):115-20.
doi: 10.1016/j.regpep.2009.02.007. Epub 2009 Feb 24.

Effects of Dendroaspis natriuretic peptide on delayed rectifier potassium currents and its mechanism

Affiliations

Effects of Dendroaspis natriuretic peptide on delayed rectifier potassium currents and its mechanism

Xin-Yi Gu et al. Regul Pept. .

Abstract

Dendroaspis natriuretic peptide (DNP), a newly-described natriuretic peptide, plays an inhibitory role in smooth muscle motility of the gastrointestinal tract. However, the effect of DNP on delayed rectifier potassium currents I(K(V)) is still unclear. In this study, we sought to investigate the effect of DNP on I(K(V)) and its mechanism in gastric antral circular smooth muscle cells using the whole-cell patch-clamp technique. DNP significantly inhibited I(K(V)) in a concentration-dependent manner. LY83583 (1 micromol/l), a guanylate cyclase inhibitor, significantly impaired DNP-induced inhibition of I(K(V)). Moreover, DNP-induced inhibition in I(K(V)) was potentiated by the cyclic guanosine monophosphate (cGMP) sensitive phosphoesterase inhibitor zaparinast (0.1 micromol/l). DNP-induced inhibition of I(K(V)) was completely blocked by KT5823, an inhibitor of cGMP-dependent protein kinase G(PKG), but not affected by KT-5720, a PKA-specific inhibitor. Taken together, our results suggest that DNP inhibits I(K(V)) via the cGMP/PKG-dependent signaling axis instead of the cAMP/PKA pathway.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources